Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
Answer:
The total momentum of the universe is always the same and is equal to zero. The total momentum of an isolated system never changes. Momentum can be transferred from one body to another.
Momentum quantifies how likely an object is to stay in motion. Momentum can also be explained using the equation, p=mv, where p is equal to momentum, m is equal to mass, and v is equal to velocity.
Explanation:
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>
Answer:
Lift is the upward force on the wing acting perpendicular to the relative wind and perpendicular to the aircraft's lateral axis. Lift is required to counteract the aircraft's weight.
Explanation:
1). The little projectile is affected by friction all the way through the block.
Friction robs some kinetic energy.
2). The block is affected by friction as it scrapes along the top of the post.
Friction robs some kinetic energy.
3). The block is also affected by friction with the air (air resistance) as it
falls to the ground. Friction robs some kinetic energy.