Answer:
a. A = 0.0859 m^2
b. A = 0.0178 m^2
Explanation:
Two flat surfaces are exposed to a uniform, horizontal magnetic field of magnitude 0.47 T. When viewed edge-on, the first surface is tilted at an angle of from the horizontal, and a net magnetic flux of 8.4 103 Wb passes through it. The same net magnetic flux passes through the second surface. (a) Determine the area of the first surface. (b) Find the smallest possible value for the area of the second surface.
take note that the question has not specified th angle which the surface is tilted so i assume the angle is at
to the horizontal
flux = BAcos(
)
B=magnetic flux in Weber
A=area of the flat surface in m^2
=the angle to the horizontal
a) 8.4 x10^-3= (.47)Acos(78)
alpha has to be the angle from the normal and not the horizontal so 90-12=78,
8.4 x10^-3
/(.47)cos(78)
A = 0.0859 m^2
b) If flux remains the same then for it to be the smallest possible area it needs to be perpendicular to the magnetic field so alpha would be 0.
8.4 x10^-3 = (.47)Acos(0)
A = 0.0178 m^2
Answer:
an expression of more than two algebraic terms, especially the sum of several terms that contain different powers of the same variable(s).
Answer:
1.Length is one of the four factors on which the wave frequency depends. So if the length of the string changes then there will be a change in the vibration of string. So in this case if the lengths are different then the wave frequency of both will be different.
2. Wave speed will be the same as it depends on tension and linear density of it.
3. Wavelength itself is find out by the length of string so it depends on length and it will vary with the lengths of strings.
Explanation:
A rotation motion is a motion that takes place around a fixed axis.
Like gears turning on each other.