Answer:
-0.045 N, they will attract each other
Explanation:
The strength of the electrostatic force exerted on a charge is given by

where
q is the magnitude of the charge
E is the electric field magnitude
In this problem,

(negative because inward)
So the strength of the electrostatic force is

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.
Gold’s molar mass is about 196 while aluminum is about 27, thus 50cm of gold has more mass
Answer:
Fx = 4.92 [N]
Fy = 0.868 [N]
Explanation:
Let's take the 10 degrees as a measure from the horizontal component to the vector.
Thus taking the components in the X & y axes respectively:
Fx = 5*cos(10) = 4.92 [N]
Fy = 5*sin(10) = 0.868 [N]
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 

Answer:
Explanation:
The equation for this, since we are talking about weight on an elevator, is Newton's 2nd Law adjusted to fit our needs:
where the Normal Force needed to lift that elevator car is the tension. So the equation then becomes
T = ma + w where T is the tension in the cable to lift the elevator, m is the mass of the elevator (which we have to solve for), a is the acceleration of the elevator (positive since it's going up), and w is the weight of the elevator (which we have as 5500 N). Solving first for mass:
w = mg and
5500 =- m(10) so
m = 550 kg. Now we have what we need to solve for the tension:
T = 550(4.0) + 5500 and
T = 2200 + 5500 so
T = 7700 N