Answer:
10 m/s
Explanation:
The problem can be solved by using the law of conservation of momentum: the initial momentum has to be equal to the final momentum, so we can write the following


where
is the mass of the first car
is the initial velocity of the first car
is the mass of the second car
is the initial velocity of the second car
is the final velocity of the two combined cars after the collision
Re-arranging the equation and substituting the numbers, we find

Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
Explanation:
Answer:
The answer is 5 meters per second.
To develop this problem, it is necessary to apply the concepts related to Faraday's law and Magnetic Flow, which is defined as the change that the magnetic field has in a given area. In other words

Where
B= Magnetic Field
A = Area
Angle between magnetic field lines and normal to the area
The differentiation of this value allows us to obtain in turn the induced emf or electromotive force.
In this case we have that the flat loop of wire is perpendicular to the magnetic field, therefore the angle is 0 degrees, since its magnetic field acts parallel to the area:
0 then our expression can be written as

From the same value of the electromotive force we have to

Replacing we have

Replacing with our values we have that


Therefore the magnitude of the induced emf in the loop is 0.0237V
On the other hand we have that the current by Ohm's Law can be defined as

For the given value of the resistance and the previously found potential we have to

