The Newton’s law Nikolas would use to come up with this idea is the <span>Third law that states:
</span><span>When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.
</span>
So, in this case, let's name the first Body
A which is the skateboard and the second body
B which is <span>the compressed carbon dioxide in a fire extinguisher. Then, as shown in the figure below, according to the Third law:
</span>

<span>
</span>
Answer:
1. Revolve around a point
2. Formed from dust and gas particles
3. Exoplanets and associated star orbit a common center of mass
4. Composed of gases found in Jupiter and Saturn
Answer:
Water gains energy during evaporation and releases it during condensation in the atmosphere
Explanation:
In the water cycle, heat energy is gained or lost by water as it undergoes various processes in the cycle.
In evaporation, water molecules gains energy because the molecules of water vibrate faster and become more energetic. Hence they are able to escape into the atmosphere from the surface of the liquid.
In condensation, the molecules of gaseous water looses energy and becomes liquid.
Hence, water gains energy during evaporation and releases it during condensation in the atmosphere.
Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
Velocity = 4.33[m/s]
Explanation:
The total energy or mechanical energy is the sum of the potential energy plus the kinetic energy, as it is known the velocity and the height, we can determine the total energy.
![E_{M}=E_{p} + E_{k} \\E_{p} = potential energy [J]\\E_{k} = kinetic energy [J]\\where:\\E_{p} =m*g*h\\E_{p} = 4*9.81*0.5=19.62[J]\\E_{k}=\frac{1}{2} *m*v^{2} \\E_{k}=\frac{1}{2} *4*(3)^{2} \\E_{k}=18[J]\\Therefore\\E_{M} =18+19.62\\E_{M}=37.62[J]](https://tex.z-dn.net/?f=E_%7BM%7D%3DE_%7Bp%7D%20%20%2B%20E_%7Bk%7D%20%5C%5CE_%7Bp%7D%20%3D%20potential%20energy%20%5BJ%5D%5C%5CE_%7Bk%7D%20%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cwhere%3A%5C%5CE_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%20%3D%204%2A9.81%2A0.5%3D19.62%5BJ%5D%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5CE_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2A4%2A%283%29%5E%7B2%7D%20%5C%5CE_%7Bk%7D%3D18%5BJ%5D%5C%5CTherefore%5C%5CE_%7BM%7D%20%3D18%2B19.62%5C%5CE_%7BM%7D%3D37.62%5BJ%5D)
All this energy will become kinetic energy and we can find the velocity.
![37.62=\frac{1}{2} *m*v^{2} \\v=\sqrt{\frac{37.62*2}{4} } \\v=4.33[m/s]](https://tex.z-dn.net/?f=37.62%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B37.62%2A2%7D%7B4%7D%20%7D%20%5C%5Cv%3D4.33%5Bm%2Fs%5D)