Answer: Objects with like charge repel each other.
Answer: When maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas then balanced equation is
.
Explanation:
The word equation is given as maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas.
Now, in terms of chemical formulae this reaction equation will be as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply HCl by 4 on reactant side and multiply
by 2 on product side. Therefore, the equation can be rewritten as follows.

Hence, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Since, this equation contains same number of atoms on both reactant and product side. Therefore, this equation is now balanced equation.
Thus, we can conclude that when maganese dioxide is added to hydrogen chloride you get water maganese dichloride and chlorine gas then balanced equation is
.
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Explanation:
As per the Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
Hence, according to this law the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
..........(1)
..............(2)
The final reaction is as follows:
.............(3)
Therefore, adding (1) and (2) we get the final equation (3) and value of
at 298 K will be as follows.
=
+
= -314 kJ + (-80) kJ
= -394 kJ
Thus, we can conclude that
at 298 K for the given process is -394 kJ.