We will use Arrehenius equation
lnK = lnA -( Ea / RT)
R = gas constant = 8.314 J / mol K
T = temperature = 25 C = 298 K
A = frequency factor
ln A = ln (1.5×10 ^11) = 25.73
Ea = activation energy = 56.9 kj/mol = 56900 J / mol
lnK = 25.73 - (56900 / 8.314 X 298) = 2.76
Taking antilog
K = 15.8
Answer:
Energy levels
Explanation:
Elements in one row of the periodic table have the same energy levels. A row on the periodic table is the horizontal arrangement of elements. These rows are called periods.
There are 7 periods on the periodic table.
- Each elements on a period begins with an atom having one valence electrons and then ending with completely filled orbitals.
- Elements in the same period are known to have the same electronic shells which is the energy level.
- The principal quantum number of their electrons is the same.
Nucleic Acids are polymers made of nucleotideds
Answer:
10.78 → 4 significant figures, pH = 10.78 → [H⁺] = 1.66ₓ10⁻¹¹ M
6.78 → 3 significant figures, pH = 6.78 → [H⁺] = 1.66ₓ10⁻⁷ M
0.78 → 2 significant figures, pH = 0.78 → [H⁺] = 0.166 M
pH always can be expressed by at least 4 significant figures. The [H⁺], can be expressed by, at least 3 significant figures
Explanation:
Significant figures are the numbers of a measurement that have certainty plus a doubtful number (it is associated with the uncertainty in the measurement). For example, if we measure a paper with a ruler and the ruler measures up to centimeters we can say that the paper is 7.5 cm long, with which we know that the paper is 7 cm + 0.5 cm which we associate with uncertainty. In this case we talk about two significant figures. If the sheet measured 7.57 cm we would already be talking about a more precise measurement and in this case with 3 significant figures.
10.78 → 4 significant figures
6.78 → 3 significant figures
0.78 → 2 significant figures
To determine [H⁺], we apply 10^-pH
10⁻¹⁰°⁷⁸ = 1.66ₓ10⁻¹¹ M
10⁻⁶°⁷⁸ = 1.66ₓ10⁻⁷ M
10⁻⁰°⁷⁸ = 0.166 M