Answer: The concentrations of
at equilibrium is 0.023 M
Explanation:
Moles of
= 
Volume of solution = 1 L
Initial concentration of
= 
The given balanced equilibrium reaction is,

Initial conc. 0.14 M 0 M 0M
At eqm. conc. (0.14-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO]\times [Cl_2]}{[COCl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BCOCl_2%5D%7D)
Now put all the given values in this expression, we get :

By solving the term 'x', we get :
x = 0.023 M
Thus, the concentrations of
at equilibrium is 0.023 M
The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =

Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =


Thus vant hoff factor for sodium chloride in X is 1.9
Answer:
Specific heat of water = 33.89 KJ
Explanation:
Given:
mass of water = 81 gram
Initial temperature = 0°C
Final temperature = 100°C
Specific heat of water = 4.184
Find:
Required heat Q
Computation:
Q = Mass x Specific heat of water x (Final temperature - Initial temperature)
Q = (81)(4.184)(100-0)
Q = 33,890.4
Specific heat of water = 33.89 KJ
Answer is: (2) Chemical energy is converted to electrical energy.
An electrochemical cell (voltaic or galvanic cell) is generating electrical energy from chemical reactions.
In galvanic cell, specie (for example zinc and zinc cations) from one half-cell, lose electrons (oxidation) and species from the other half-cell (for example copper and copper cations) gain electrons (reduction).
Oxidation on the zinc anode: Zn(s) → Zn²⁺(aq) + 2e⁻.
Reduction on the copper cathode: Cu²⁺(aq) + 2e⁻ → Cu(s).