Given is the specific heat of water equal to 4.18 Joule per gram per *C.
This means to raise the temperature of 1 g of water by 1 degree Celsius we need 4.18 joule of energy.
Now, look at the question. We are asked that how much amount of energy would be required to raise the temperature of 25 g of water by (54-50) = 4 degree celsius.
To do so we have formula
Q = m C (temperature difference)
Have a look at pic for answer
Answer:
-3
Explanation:
The oxidation state or oxidation number of an atom is the total number of electrons that an atom either gains or loses in order to form a chemical bond with another atom.
The complex anion here is [Cr(CN)6]3-.
Now, as the oxidation state of CN or cyanide ligand is -1, and if we suppose the oxidation state of Cr to be 'x', then; x - 6 = -3 (overall charge on the anion),
so x= +3. Hence the oxidation state of Chromium in this complex hexacyanochromium (III) anion comes out to be -3.
.
A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.
<h2>Answer:</h2><h3>Part 1:</h3>
Location the element zinc (Zn) on the periodic table:
- Group number : 12
- Period number : 4
- Block : d block
- Element : Transition elements.
<h3>Part 2:</h3>
Protons in an atom of Zn: 30
<h3>Part 3:</h3>
Electrons in a Zn atom: 30
<h3>Part 4 :</h3>
Neutron in an atom of Zn: 35
<h3 />
Answer:
18.3 kilopascals
Explanation:
We are given that the volume of this container is 0.0372 meters^3, that the mass of water is 4.65 grams, and that the temperature of this water vapor ( over time ) is 368 degrees Kelvins. This is a problem where the ideal gas law is an " ideal " application.
_______________________________________________________
First calculate the number of moles present in the water ( H2O ). Water has a mass of 18, so it should be that n, in the ideal gas law - PV = nRT, is equal to 4 / 18. It is the amount of the substance.
We now have enough information to solve for P in PV = nRT,
P( 0.0372 ) = 4 / 18( 8.314 )( 368 ),
P ≈ 18,276.9
Pressure ≈ 18.3 kilopascals
<u><em>Hope that helps!</em></u>