In order to calculate the angle, we can use the formula below for a constructive interference (the interference is constructive because the fringe is bright):

Where d is the distance between the slits, m is the order of the interference and lambda is the wavelength.
So, using d = 8.25 * 10^-5, m = 2 and lambda = 4.5 * 10^-7, we have:

Therefore the correct option is the second one.
Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
All of those are true, except the one about the radius.
Both ends of a chord have to be on the circle, but one end
of a radius is at the center, so a radius can't be a chord.
Answer:
An element's valence electron tells us about its ability to react and not react. More rules to this, but that's the gist of it. it also helps us form bonds
Explanation:
Answer:
f = 2858.33 Hz
Explanation:
given,
distance between speaker (A) and the person = 2.34 m
Distance between speaker (B) and the person is AB =
=
= 2.46 m
path difference d = BP - AP
= 2.46 - 2.34 m
= 0.12 m
now, λ = 0.12
speed of sound = 343 m/s


f = 2858.33 Hz
the lowest frequency that will produce constructive interference is equal to
f = 2858.33 Hz