Answer:
2. The hydrogen atom has quantized energy levels.
Explanation:
The Bohr model of the atom states that the structure of the atom is quantized, that is, that electrons can only orbit the nucleus in specific orbits with a fixed radius. Therefore, the electron cannot be in energy levels that do not correspond to these quantized levels.
Answer:
Most metals are in the liquid state at room temperature.<u>False</u><u>.</u>
Explanation:
it needs excess heat except mercury and lithium.
You haven't included the list of choices that goes with the question, so it's
impossible for me to choose the correct one, or to help you choose it.
Regarding my ability to answer the question and collect the 5-point bounty,
I'm free to make up any phrase of my own that correctly describes an atom.
-- very very very very very very very tiny
-- includes even tinier particles, with electric charges
both positive and negative
-- smaller than the wavelength of visible light
Answer:
3300J
Explanation:
Work done is the energy that is lost by the skater
Formula for workdone = 1/2*mV^2
m = 66kg
V = 10m/s
Work done = 1/2 * 66 * 10^2
= 3300J
The magnitude of static friction is
<em>f</em> = <em>mv</em> ²/<em>r</em>
(i.e. the net force acting on the car parallel to the road points toward the center of the curve)
while the net vertical force must be
∑ <em>F</em> = <em>n</em> - <em>mg</em> = 0
because the car is otherwise in equilibrium. Then
==> <em>n</em> = <em>mg</em>
==> <em>f</em> = <em>µn</em> = <em>µmg</em> = <em>mv</em> ²/<em>r</em>
==> <em>µ</em> = <em>v</em> ²/(<em>rg</em>)
We have
<em>v</em> = 101 km/h ≈ 28.1 m/s
<em>r</em> = 110 m
<em>g</em> = 9.80 m/s²
so that
<em>µ</em> = (28.1 m/s)² / ((110 m) <em>g</em>) ≈ 0.730