Answer:
Q = 40.1 degrees
Explanation:
Given:
- The weight of the timber W = 670 N
- Water surface level from pivot y = 2.1 m
- The specific density of water Y = 9810 N / m^3
- Dimension of timber = (0.15 x 0.15 x 0.0036) m
Find:
- The angle of inclination Q that the timber makes with the horizontal.
Solution:
- Calculate the Flamboyant Force F_b acting upwards at a distance x along the timber, which is unknown:
F_b = Y * V_timber
F_b = 9810*0.15*0.15*x
F_b = 226.7*x N
- Take static equilibrium conditions for the timber, and take moments about the pivot:
(M)_p = 0
W*0.5*3.6*cos(Q) - x/2 * F_b*cos(Q) = 0
- Plug values in:
670*0.5*3.6 - x^2 * 0.5*226.7 = 0
x^2 = 1206 / 113.35
x = 3.26 m
- Now use the value of x and vertical height y to compute the angle of inclination to be:
sin(Q) = y / x
sin(Q) = 2.1 / 3.26
Q = sin^-1 (0.6441718)
Q = 40.1 degrees
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.
Answer:
The initial velocity of the ball is <u>39.2 m/s in the upward direction.</u>
Explanation:
Given:
Upward direction is positive. So, downward direction is negative.
Tota time the ball remains in air (t) = 8.0 s
Net displacement of the ball (S) = Final position - Initial position = 0 m
Acceleration of the ball is due to gravity. So, (Acting down)
Now, let the initial velocity be 'u' m/s.
From Newton's equation of motion, we have:
Plug in the given values and solve for 'u'. This gives,
Therefore, the initial velocity of the ball is 39.2 m/s in the upward direction.