The nuclear fusion of hydrogen atoms releases a huge amount of energy. So the correct choice is C. Conversion of mass to energy.
What is nuclear fusion?
When two small nuclei join to form a new nucleus, then this process is termed nuclear fusion. A huge amount of energy is released when there occurs nuclear fusion between the two nuclei. And a new element is formed.
It has been observed that the amount of energy released in nuclear fusion is equal to the mass difference between the mass of the formed nucleus and the total mass of old nuclei. Hence in the nuclear fusion of hydrogen nuclei to form a helium nucleus, the energy is released due to the conversion of mass into energy.
The pressure is increased to make the hydrogen atoms fuse but this change in pressure does not contribute to the energy released in the fusion of hydrogen.
The magnitude of the gravitational field is too low and it does not contribute to the energy released in the fusion of hydrogen.
The gravitational collapse does not occur between the two hydrogen atoms. This phenomenon occurs in celestial bodies so this also does not contribute to the energy released in the fusion of hydrogen.
Learn more about nuclear fusion here:
brainly.com/question/10165218
#SPJ4
<span><em>The answer is </em><em>A</em><em> :</em><em>" R = (First digit * 10 + second digit) * multiplier. "
</em><em>yw peasant XD</em><em>
</em></span>
Answer:
a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
The center of mass of a system of particles (
), measured in meters, is defined by this weighted average:
(1)
Where:
- Mass of the i-th particle, measured in kilograms.
- Location of the i-th particle with respect to origin, measured in meters.
If we know that
,
,
,
,
and
, then the coordinates of the third particle are:




a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
Orbital speed= 2pi x radius / time period
=2pi x 1.5x10^11 / 365.25
=2.58x10^9m/day
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.