for this we apply, Heisenberg's uncertainty principle.
it states that physical variables like position and momentum, can never simultaneously know both variables at the same moment.
the formula is,
Δp * Δx = h/4π
m(e).Δv * Δx = h/4π
by rearranging,
Δx = h / 4π * m(e).Δv
Δx = (6.63*10^-34) / 4 * 3.142 * 9.11*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 / 583.9 X 10 ⁻³¹
Δx = 0.011 X 10⁻³
for the bullet
Δx = (6.63*10^-34) / 4 * 3.142 * 0.032*10^-31 * 5.10*10^-2
Δx = 6.63*10^-34 /2.05
Δx =3.23 X 10⁻³² m
therefore, we can say that the lower limits are 0.011 X 10⁻³ m for the electron and 3.23 X 10⁻³² m for the bullet
To know more about bullet problem,
brainly.com/question/21150302
#SPJ4
Answer:
Explanation:
acceleration of test tube
= ω² R
= (2πn)² R
= 4π²n²R
n = no of rotation per second
= 3700 / 60
= 61.67
R = .10 m
acceleration
= 4π²n²R
= 4 x 3.14² x 61.67² x .10
= 14999 N Approx
You may have a cold if you do not feel well, depends on the symptoms
Answer:
Point a
Explanation:
The potential energy of an object is given by :
P = mgh
m is mass, g is acceleration due to gravity, h is height above ground level.
Potential energy is directly proportional to the position of an object.
In the attached figure, the maximum height is shown at point (a). It means it will have maximum potential energy at a as compared to b,c and d.
Answer:
true
Explanation:
this the nucleus is located at the centre and contains protons and neutrons