1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kipish [7]
3 years ago
9

In the Balmer series, how many spectral lines have the wavelength greater than 400 nm?

Physics
1 answer:
Irina18 [472]3 years ago
4 0

<span>The Balmer series or Balmer lines in atomic physics, is the designation of one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885. this is all I know sorry</span>
You might be interested in
At an instant a traffic light turns green an automobile that has been waiting at an intersection of the road accelerates with 5m
joja [24]

1) The car overtakes the truck at a distance of 160 m far from the intersection.

2) The velocity of the car is 40 m/s

Explanation:

1)

The car is travelling with a constant acceleration starting from rest, so its position at time t (measured taking the intersection as the origin) is given by

x_c(t) = \frac{1}{2}at^2

where

a=5 m/s^2 is the acceleration

t is the time

On the other hand, the truck is travelling at a constant velocity, therefore its position at time t is given by

x_t(t) = vt

where

v = 20 m/s is the velocity of the truck

t is the time

The car overtakes the truck when the two positions are the  same, so when

x_c(t) = x_t(t)\\\frac{1}{2}at^2 = vt\\t=\frac{2v}{a}=\frac{2(20)}{5}=8 s

So, after a time of 8 seconds. Therefore, the distance covered by the car during this time is

x_c(8) = \frac{1}{2}(5)(8)^2=160 m

So, the car overtakes the truck 160 m far from the intersection.

2)

The motion of the car is a uniformly accelerated motion, so the velocity of the car at time t is given by the suvat equation

v=u+at

where

v is the velocity at time t

u is the initial velocity

a is the acceleration

For the car in this problem, we have:

u = 0 (it starts  from rest)

a=5 m/s^2

And we know that the car overtakes the truck when

t = 8 s

Substituting into the equation,

v=0+(5)(8)=40 m/s

Learn more about accelerated motion:

brainly.com/question/9527152

brainly.com/question/11181826

brainly.com/question/2506873

brainly.com/question/2562700

#LearnwithBrainly

8 0
3 years ago
Why can friction make observing Newton's first law of motion difficult?
Kamila [148]
The law says things travel in a straight line at constant speed unless acted upon by a force.  But friction is a force but it can't be seen easily other than its effect, which is to bring the object to rest in seeming violation of the 1st law.
6 0
4 years ago
How much work does it take to move a 50 μC charge<br> against a 12 V potential difference?
lukranit [14]
<span>work =V*Q =12*50*10^-6

The total work done will be equal to 

work = V.Q

which means 

w= 12 . 50.10^-6
Hence,
w= 0.0006 J</span>
8 0
3 years ago
Car A starts out traveling at 35.0 km/h and accelerates at 25.0 km/h2 for 15.0 min. Car B starts out traveling at 45.0 km/h and
lawyer [7]

1 kilometre=1000 metre

      1 hour = 3600 second

       1\ km/hr=\frac{1000}{3600} m/s

       1\ km/hr=\frac{5}{18} m/s

The initial velocity of car A is 35.0 km/hr i.e

                                         35.0\ km/hr=35*\frac{5}{18} m/s

                                                                   = 9.72 m/s

The initial velocity of car B is 45 km/hr =12.5 m/s

The initial velocity of car C is 32 km/hr = 8.89 m/s

The initial velocity of car D is 110 km/hr=30.56 m/s

The acceleration of car A is given as  25\ km/hr^2

                                            =\ 25*\frac{1000}{3600*3600} m/s^2

                                            =0.00192901234 m/s^2

The time taken by car A = 15 min.

From equation of kinematics we know that-

                                 v= u+at      [Here v is the final velocity and a is the acceleration and t is the time]

Final velocity of A,  v = 9.72 m/s +[0.00192901234×15×60]m/s

                                   =11.456111106 m/s

The acceleration of B is given as    15\ km/hr^2

                                    =0.00115740740740 m/s^2

The time taken by car B =20 min

The final velocity of B is -

                             v= u+at

                               = u-at    [Here a is negative due to deceleration]

                               =12.5 m/s +[0.0011574074074×20×60]

                               =13.8888888.....

                               =13.9

The acceleration of C is given as    40\ km/hr^2          

                                                            =\ 0.003086419753 m/s^2

The time taken by car C =30 min

The final velocity of C is-

                                v = u+at

                                   =8.89 m/s+[0.003086419753×30×60] m/s

                                   =14.4455555555..m/s

                                   =14.45 m/s

The car C is decelerating.The deceleration is given as-  60\ km/hr^2

                                                                      =0.0046296296296m/s^2

The time taken by car D= 45 min.

The final velocity of the car D is-

                     v =u+at

                        =30.56 -[0.00462962962962×45×60]m/s

                        =18.06 m/s

Hence from above we see that the magnitude of final velocity car C and B is close to 15 m/s. The car C is very close as compared to car B.

                 


3 0
3 years ago
A heated iron is pressed against a shirt, warming it. This is an
Nady [450]

Answer:

Convection? I'm pretty sure that's it

6 0
3 years ago
Other questions:
  • Three science questions help please!
    5·1 answer
  • A 80 ohms resistor, 0.2 H inductance and 0.1 mF capacitor are connected in series across a generator (60 Hz, V rms=120 V). Deter
    9·1 answer
  • Light of wavelength 480 nm illuminates a double slit, and the interference pattern is observed on a screen. At the position of t
    5·1 answer
  • A 37-cm-long wire of linear density 18 g/m vibrating at its second mode, excites the third vibrational mode of a tube of length
    12·2 answers
  • A bullet moving at a speed of 152 m/s passes through a plank of wood at 128m/s. Another bullet moving at 97m/s passes through th
    12·1 answer
  • I WILLL GIVE BRAINLYEST!!!
    14·1 answer
  • A rock falls off a cliff with an acceleration of -9.8 m/s^2 and hits the ground 5 s later . How high is the diff?​
    5·1 answer
  • A soccer ball with mass 0.450 kg is initially moving with speed 2.20 m/s. A soccer player kicks the ball, exerting a constant fo
    13·1 answer
  • URGENT!! An astronaut on the International Space Station is doing a spacewalk to fix a solar panel that has malfunctioned. While
    14·2 answers
  • GIVING BRAINLIEST TO THE CORRECT ANSWER!!
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!