<h2>
Answer:
</h2>
The velocity of a satellite describing a circular orbit is <u>constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting
the radius of the orbit (measured from the center of the planet to the satellite).
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. I<u>t depends on the mass of the massive body.</u>
In addition, this orbital speed is constant because at all times <u>both the kinetic energy and the potential remain constant</u> in a circular (closed) orbit.
Number 4 is c , number 5 is a , number 6 is d and 7 is a
<h2>
Answer:7.14
,4.125
</h2>
Explanation:
Whenever an object is moving in a 2D frame,its motion can be analysed as if it is travelling in two independent 1D frames.
One of such independent 1D frames are along horizontal and another along vertical.
Let
be the total velocity.
Given that,
We call the horizontal velocity as
and the vertical velocity as
.
=

where
is the angle between the object and horizontal.
It is given that 


Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.