The answer is D. I’m assuming this is surface area so here’s my explanation:) ok so the area of the triangle is 6 (4x3 divided by 2) and when you add the other triangle that’s 12. Ok so we have 12 so far. Then the area of the bottom rectangle is 24 (3x8). Then the area of the side rectangle is 32 (4x8). THEN the top rectangle’s area is 40 (8x5). When you add the numbers up (12+24+32+40) you get 108! And of course dont forget the cm2. ( centimeters squared ). :) I hope this helps
We have to calculate the fourth roots of this complex number:
![z=9+9\sqrt[]{3}i](https://tex.z-dn.net/?f=z%3D9%2B9%5Csqrt%5B%5D%7B3%7Di)
We start by writing this number in exponential form:
![\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20r%3D%5Csqrt%5B%5D%7B9%5E2%2B%289%5Csqrt%5B%5D%7B3%7D%29%5E2%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B81%5Ccdot3%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B243%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B324%7D%20%5C%5C%20r%3D18%20%5Cend%7Bgathered%7D)
![\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}](https://tex.z-dn.net/?f=%5Ctheta%3D%5Carctan%20%28%5Cfrac%7B9%5Csqrt%5B%5D%7B3%7D%7D%7B9%7D%29%3D%5Carctan%20%28%5Csqrt%5B%5D%7B3%7D%29%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
Then, the exponential form is:

The formula for the roots of a complex number can be written (in polar form) as:

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.
To simplify the calculations, we start by calculating the fourth root of r:
![r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D18%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B18%7D)
<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>
Then, we calculate the arguments of the trigonometric functions:

We can now calculate for each value of k:
![\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D0%5Ccolon%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%20e%5E%7Bi%5Cfrac%7B%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D1%5Ccolon%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B5%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D2%5Ccolon%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B9%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D3%5Ccolon%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B13%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
Answer:
The four roots in exponential form are
z0 = 18^(1/4)*e^(i*π/8)
z1 = 18^(1/4)*e^(i*5π/8)
z2 = 18^(1/4)*e^(i*9π/8)
z3 = 18^(1/4)*e^(i*13π/8)
Answer:
4.243
step by step explanation: