Answer:
50
Step-by-step explanation:
Line 1:
Expanding the vertex form, we have
x² + 2·1.5x + 1.5² - 0.25 = x² +3x +2
Expanding the factored form, we have
x² +(1+2)x +1·2 = x² +3x +2
Comparing these to x² +3x +2, we find ...
• the three expressions are equivalent on Line 1
Line 2:
Expanding the vertex form, we have
x² +2·2.5x +2.5² +6.25 = x² +5x +12.5
Expanding the factored form, we have
x² +(2+3)x +2·3 = x² +5x +6
Comparing these to x² +5x +6, we find ...
• the three expressions are NOT equivalent on Line 2
The appropriate choice is
Line 1 only
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Answer:

Step-by-step explanation:
Given:

1.

2.

3.

4.

5.

6.

7.

8.
