Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.
Idk it’s making me answer a question in order to get help on my own
The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula
Answer: The correct option is 4.
Explanation: All the options will undergo some type of radioactive decay processes. There are 3 decay processes:
1) Alpha decay: It is a decay process in which alpha particle is released which has has a mass number of 4 and a charge of +2.

2) Beta-minus decay: It is a decay in which a beta particle is released. The beta particle released has a mass number of 0 and a charge of (-1).

3) Beta-plus decay: It is a decay process in which a positron is released. The positron released has a mass number of 0 and has a charge of +1.

For the given options:
Option 1: This nuclei will undergo beta-plus decay process to form 

Option 2: This nuclei will undergo beta-minus decay process to form 

Option 3: This nuclei will undergo a beta minus decay process to form 

Option 4: This nuclei will undergo an alpha decay process to form 

Hence, the correct option is 4.
Alka-seltzer in an antacid that contains a mixture of sodium bicarbonate and citric acid. When the tablet is dissolved in water, the reactants which are in solid form in tablet become aqueous and react with each other.
During this reaction, Carbon Dioxide gas is evolved which causes the reaction mixture to fizz. The equation is given below.

Rate of the above reaction is affected by the Temperature.
As the temperature increases , the rate of the reaction increases. This happens because at higher temperature, the collisions between reacting species are more which result in formation of product in less time. This increases the rate of reaction.
We have been given equal volumes of water for each beaker. But the temperature of beaker c is 80°C which is the highest temperature. That means the reaction in beaker c is fastest.
Whereas beaker a is at lowest temperature (30°C) , therefore the reaction in beaker a would be slowest .
Therefore the answer that correctly orders the reaction rates from fastest to slowest reaction is beaker c > beaker b > beaker a