Double replacement.
Ba(OH)2 + H2SO4 ====> 2H2O + BaSO4
The volume of 0. 250 mole sample of
gas occupy if it had a pressure of 1. 70 atm and a temperature of 35 °C is 3.71 L.
Calculation,
According to ideal gas equation which is known as ideal gas law,
PV =n RT
- P is the pressure of the hydrogen gas = 1.7 atm
- Vis the volume of the hydrogen gas = ?
- n is the number of the hydrogen gas = 0.25 mole
- R is the universal gas constant = 0.082 atm L/mole K
- T is the temperature of the sample = 35°C = 35 + 273 = 308 K
By putting all the values of the given data like pressure temperature universal gas constant and number of moles in equation (i) we get ,
1.7 atm×V = 0.25 mole ×0.082 × 208 K
V = 0.25 mole ×0.082atm L /mole K × 308 K /1.7 atm
V = 3.71 L
So, volume of the sample of the hydrogen gas occupy is 3.71 L.
learn more about ideal gas equation
brainly.com/question/4147359
#SPJ4
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>
H2SO4 + 2RbOH -> Rb2SO4 + 2H2O
If you want an explanation, keep reading.
In the first portion, there are two hydrogen ions and four sulfate ions.
The second portion has one rubidium ions and one hydroxide ion.
On the other side of the equation, in order to keep those two rubidiums balanced, you'll need to add a two at the beginning of the second portion, but in that process you are giving a second hydroxide value.
Back to the right side, there is there is water (H2O).
On the first portion, there were two hydrogen ions. The second portion also has two hydroxides because of the value change (adding the two to the front).
So on the fourth portion, you'd have to add another two so you could balance the four hydrogen ions (H2 and 2OH) and the two oxygen ions (2OH).
I hope this was easy to understand.