Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

Hope this helps. I provided step by step in the picture below if you want to see how I got these answers.
A= 1.0L
B= 0.50atm
C= 0.60atm
D= 4.0L
Answer:
solubility of X in water at 17.0
is 0.11 g/mL.
Explanation:
Yes, the solubility of X in water at 17.0
can be calculated using the information given.
Let's assume solubility of X in water at 17.0
is y g/mL
The geochemist ultimately got 3.96 g of crystals of X after evaporating the diluted solution made by diluting the 36.0 mL of stock solution.
So, solubility of X in 1 mL of water = y g
Hence, solubility of X in 36.0 mL of water = 36y g
So, 36y = 3.96
or, y =
= 0.11
Hence solubility of X in water at 17.0
is 0.11 g/mL.