<span>Among the given choices, the third option is the only one which illustrates single replacement.
(3)H2SO4 + Mg --> H2 + MgSO4
A single replacement is also termed as single-displacement reaction, a reaction by which an element in a compound, displaces another element.
It can be illustrated this way:
X + Y-Z → X-Z + Y</span>
Answer: See description
Explanation:
Kepler's laws have three principal points:
1. planets orbit the sun in elliptical paths
2. the orbial period is related to the orbital distance by 
where T is the orbital period and d is the orbital distance, T is in years and d is measured in units of the earth sun distance.
3. planets closer to the sun move faster than planets far away from it.
Newton:
Newton discovered that there is a consequence to the gravity exerted by objects: mass, the heavier the planet, the more gravitational force it posseses ( thats why we orbit the sun)
with the gravitational force
newton discovered the inverse-quadratic relationship between the distance of the planets and the acceleration exerted by the force one could exert on another.
Kepler's laws were mostly based on observed evidence with quantitative relationships between the mentioned variables. Newton's laws are based on calculus and symbolic equations. While Kepler's mode is basic, Newton took another step in and build a more general model for gravity (which was improved by general relativity later). In a nutshell Newton proved the scientific causes for Kepler's laws...
When an electron absorbs energy, it will move up from a lower energy level to a higher energy level, called the "excited state" of the negatively-charged subatomic particle.<span> However, the absorbed energy is released within a small interval of time and the electron moves down to its "ground state."</span>
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
The pH of a solution is 9.02.
c(HCN) = 1.25 M; concentration of the cyanide acid
n(NaCN) = 1.37 mol; amount of the salt
V = 1.699 l; volume of the solution
c(NaCN) = 1.37 mol ÷ 1.699 l
c(NaCN) = 0.806 M; concentration of the salt
Ka = 6.2 × 10⁻¹⁰; acid constant
pKa = -logKa
pKa = - log (6.2 × 10⁻¹⁰)
pKa = 9.21
Henderson–Hasselbalch equation for the buffer solution:
pH = pKa + log(cs/ck)
pH = pKa + log(cs/ck)
pH = 9.21 + log (0.806M/1.25M)
pH = 9.21 - 0.19
pH = 9.02; potential of hydrogen
More about buffer: brainly.com/question/4177791
#SPJ4