Explanation:
The given data is as follows.
= 1.5 atm,
= 20 L,
= (28 + 273) K = 301 K
= 5 atm,
= ?,
= (50 + 273) K = 323 K
Formula to calculate the volume will be as follows.
= 
Putting the given values into the above formula as follows.
=
=
= 0.64 L
Thus, we can conclude that the change in volume of the balloon will be 0.64 L.
Answer:
<u>Graphene</u> is a nanomaterial that is often used with other compounds to desalinate and decontaminate water.
The electrical behavior of semiconductor devices and electronics can be engineered using a process called <u>Doping</u>
Explanation:
Answer: A more electronegative atom will have more attraction to the electrons in a chemical bond.
Explanation:
An atom that is able to attract electrons or shared pair of electrons more towards itself is called an electronegative atom.
For example, fluorine is the most electronegative atom.
Due to its high electronegativity it is able to attract an electropositive atom like H towards itself. As a result, both fluorine and hydrogen will acquire stability by sharing of electrons.
Thus, we can conclude that a more electronegative atom will have more attraction to the electrons in a chemical bond.
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K