Answer:
h=12.41m
Explanation:
N=392
r=0.6m
w=24 rad/s

So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion


moment of inertia

Kinetic energy of the rotation motion

Kinetic energy translational

Total kinetic energy

Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height

Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
Answer:
unmmmmmmmm I think the answerA
Answer:
1.24611
Explanation:
V = Velocity = 10 ft/s
L = Length = 2 ft
g = Acceleration due to gravity = 32.2 ft/s²
Froude number is given by

Converting to SI units




The Froude number is 1.24611
The Froude number is equal. The Froude number is dimensionless as the units cancel each other. In order for this to happen the units used need to be consitent either imperial or SI.