You haven't included the list of choices that goes with the question, so it's
impossible for me to choose the correct one, or to help you choose it.
Regarding my ability to answer the question and collect the 5-point bounty,
I'm free to make up any phrase of my own that correctly describes an atom.
-- very very very very very very very tiny
-- includes even tinier particles, with electric charges
both positive and negative
-- smaller than the wavelength of visible light
Answer:
Explanation:
specific heat of marble is 880 J/kg °C
specific heat of brass is 920 J/kg °C
If Q heat is given to a body of mass m and specific heat s , and there is a rise of temperature t
Q = m s t
t = Q / m s
if Q and m is constant
t is inversely proportional to specific heat .
so rise in temperature will be inversely proportional to specific heat .
lower the specific heat , higher will be the rise in temperature . Since marble has lower specific heat , rise in temperature in marble will be higher and quicker .
So brass will take longer time to warm up.
V = u + a*t = 1100ft/s + (1000*10) ft/s = 11100 ft/s
Answer is <span>11,100 ft/s </span>
Answer:


Explanation:
Given:
- mass of the object,

- elastic constant of the connected spring,

- coefficient of static friction between the object and the surface,

(a)
Let x be the maximum distance of stretch without moving the mass.
<em>The spring can be stretched up to the limiting frictional force 'f' till the body is stationary.</em>


where:
N = m.g = the normal reaction force acting on the body under steady state.


(b)
Now, according to the question:
- Amplitude of oscillation,

- coefficient of kinetic friction between the object and the surface,

Let d be the total distance the object travels before stopping.
<em>Now, the energy stored in the spring due to vibration of amplitude:</em>

<u><em>This energy will be equal to the work done by the kinetic friction to stop it.</em></u>




<em>is the total distance does it travel before stopping.</em>