B. It's randomness would increase
Because the Second Law of Thermodynamics states that as energy is transferred or transformed, more and more of it is wasted. It also states that there is a natural tendency of any isolated system to degenerate into a more disordered state.
Answer:
no change in speed, therefore the body cannot be accelerated. a=0
Explanation:
When a person is accelerating his speed must change, if the speed is in the same direction as the acceleration the speed increases and if the acceleration is in the opposite direction to the speed it decreases.
In this case there is no change in speed, therefore the body cannot be accelerated.
The answer for the question is bandwagon. Hope it helped :)
Explanation:
(a) The given data is as follows.
Length of the rod, L = 0.83 m
Mass of the rod, m = 110 g = 0.11 (as 1 kg = 1000 g)
At the lowest point, angular speed of the rod (
) = 5.71 rad/s
First, we will calculate the rotational inertia of the rod about an axis passing through its fixed end is as follows.
I = 
=
= 
= 0.00631 + 0.415
= 0.42131 
Therefore, kinetic energy of the rod at its lowest point will be calculated as follows.
K = 
= 
= 6.86 J
Hence, kinetic energy of the rod at its lowest point is 6.86 J.
(b) According to the conservation of total mechanical energy of the rod, we have


or, mgh = K = 6.86 J
Therefore, h =
= 
= 0.584 m
Hence, the center of mass rises 0.584 m far above that position.