0.23 mm far apart are the second-order fringes for these two wavelengths on a screen 1.5 m away.
<h3>Given wavelengths 710nm and 660nm,0.65mm apart two slits, and a screen 1.5m away.</h3>
Position of n the order fringe = n λ D / d
for n = 2
position = 2 λ D / d
λ = 710 nm , D = 1.5m
d = .65 x 10⁻³
position 1 = 2 x 710 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3276.92 x 10⁻⁶ m
= 3.276x 10⁻³ m
= 3.276mm .
For λ = 660 nm
position = 2 λ D / d
λ = 660 nm , D = 1.5 m
d = .65 x 10⁻³
position 2 = 2 x 660 x 10⁻⁹ x 1.5 / .65 x 10⁻³
= 3046.15 x 10⁻⁶ m
= 3.046 x 10⁻³ m
= 3.046 mm .
Difference between their position
= 3.276mm ₋ 3.046 mm
= 0.23 mm .
To know more about Fringes refer to: brainly.com/question/15649748
#SPJ4
Answer:51.44 units
Explanation:
Given
x component of vector is 
y component of vector is 
so position vector is

Magnitude of vector is


|r|=51.44 units
Direction

vector is in 2nd quadrant thus


The arrows in models of magnetic and electric fields show both their magnitude and direction.
In Physics, a vector refers to a quantity that has both magnitude and direction. Hence, a vector always points in a given direction. The direction in which the arrow points is the direction of the vector in space.
In models of magnetic and electric fields, field vectors depicted by arrows because they represent both their magnitude and direction. The length of the arrow shows magnitude.
Learn more: brainly.com/question/102477
Answer:
= 201.53 meters
Explanation:
A car started from rest and accelerated at 9.54 m/s^2 for 6.5 seconds. How much distance was covered by the car?
Use the formula d = 
where d is the distance, t is the time and "a" is the acceleration.
