1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
11

How does a blue object look under all colors of light

Physics
1 answer:
OverLord2011 [107]3 years ago
6 0
The "blue" object would look the same. Say that this blue object is a square. That "square" is every color but blue. The only reason that you see it as "blue" is because what we call "blue", it the only color of light that bounces back at our eyes. Under all colors of light, especially simultaneously. This square or any shape for that matter would absorb the other colors of light, but the blue will be rejected. Therefore, we can only see what bounces back at our eyes, which is the color blue in this case. 

Hope this helps, WyattMarine501
You might be interested in
How can we magnetise a piece of iron.
liq [111]
Place the magnet at one end of the piece of metal. The magnet must make as much contact with the metal as possible. Place light pressure on the magnet and rub the metal in one direction only. Magnetization will take some time to accomplish so continue rubbing until the iron or steel attracts other pieces of metal.
4 0
3 years ago
Frost wedging occurs when water seeps into a crack in a rock, freezes, and causes the crack in the rock to widen.
Ilia_Sergeevich [38]

Answer:

the answer is true.

3 0
3 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
Prompt Write about what you have learned about parts of the atom and the
Kay [80]

Answer:

The table can be used to predict the properties of elements, even those that have not yet been discovered.  Columns (groups) and rows (periods) indicate elements that share similar characteristics. The table makes trends in element properties apparent and easy to understand. The table provides important information used to balance chemical equations. Atoms are important because they form the basic building blocks of all visible matter in the universe. There are 92 types of atoms that exist in nature, and other types of atoms can be made in the lab. The different types of atoms are called elements. Hydrogen, gold and iron are examples of elements comprised of unique types of a single kind of atom.

Explanation:

5 0
2 years ago
If a satellite weighs 321 lb. on the earth's surface (R = 4,000 miles), how much does it weigh 12,000 miles above the surface? (
Sever21 [200]

The gravitational force between the Earth and the satellite (its "weight") is inversely proportional to the distance between the centers of both objects.

On the surface, their centers are separated by 1 Earth radius.

12,000 miles above the surface, they're separated by 4 Earth radiii.

(4/1) = 4

So after the move, the satellite's weight is (1/4²) = 1/16 of its surface weight.

(321 lb) / (16) = (20 and a hair) lb

The correct choice from the given list is " <em>>20 lb "</em> .  

3 0
3 years ago
Other questions:
  • A boxer can hit a heavy bag with great force. Why can't he hit a piece of tissue paper in midair with the same amount of force?
    11·1 answer
  • A stone that is dropped freely from rest traveled half its total height in the last second. With what velocity will it strike th
    9·2 answers
  • What is angle of dip​
    10·1 answer
  • A 50.0 g toy car is released from rest on a frictionless track with a vertical loop of radius R (loop-the-loop). The initial hei
    5·1 answer
  • A small 18 kilogram canoe is floating downriver at a speed of 1 m/s. What is the canoe's kinetic energy?
    13·1 answer
  • Select the three correct parts that make up the cell theory.
    14·1 answer
  • What does cardiorespiratory fitness measure?
    15·1 answer
  • In any ecosystem_______, are the point of entry for new energy
    11·2 answers
  • If your Stronger than Hisoka, and you know it, Clap your hands! Oh, wait.. That’s right! You don’t have any hands. Lol
    5·2 answers
  • The zero tolerance law applies to drivers _________.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!