Atomic emission spectra are like fingerprints for the elements, because it can show the number of orbits in that elements as well as the energy levels of that element. As each emission of atomic spectra is unique, it is the fingerprint of element.
<u>Explanation:
</u>
Each element has unique arrangement of electrons in different energy levels or orbits. So depending upon the difference in energy of the orbital, the emission spectra will be varying for each element. As the binding energy and excitation energy is not common for any two elements, so the spectra obtained when those excited electrons will release energy to ground state will also be unique.
As in atomic emission spectra, the incident light will be absorbed by the electrons of those elements making the electron to excite, then the excited electron will return to ground state on emission of radiation of energy. Thus, this energy of emission is equal to the difference between the energy of initial and final orbital. So the spectra will act like fingerprints for elements.
The periodic table is arranged in a way that trends are present in columns and rows. Elements belonging to the same column belongs to the same family which means they have the same properties. Elements belonging to the same row have the same number of electron shells. Example of elements with the same chemical properties are Na, Li, and K all belonging to the same group.
Answer:
The electrical loads in parallel circuits each have the same voltage drop, with equals the total applied voltage of the circuit.
Explanation:
I did some research and the voltage drop across any branch of a parallel circuit is the same as the applied voltage.