Question:
The water molecules now in your body were once part of a molecular cloud. Only about onemillionth of the mass of a molecular cloud is in the form of water molecules, and the mass density of such a cloud is roughly 2.0×10−21 g/cm^3.
Estimate the volume of a piece of molecular cloud that has the same amount of water as your body.
Answer:
The volume of cloud that has the same density as the amount of water in our body is 1.4×10²⁵ cm³
Explanation:
Here, we have mass density of cloud = 2.0×10⁻²¹ g/cm^3
Density = Mass/Volume
Volume = Mass/Density = If the mass is 40 kg and the body is made up of 70% by mass of water, we have
28 kg water = 28000 g
Therefore the Volume = 28 kg/ 2.0×10⁻²¹ g/cm^3 = 1.4×10¹⁹ m³ = 1.4×10²⁵ cm³.
Therefore, the volume of cloud that has the same density as the amount of water in our body = 1.4×10²⁵ cm³.
<span> Use the Law of Cosines, where you have a triangle with included angle of 145 degrees and sides of 16 and 18. You are then solving the equation: </span>
<span>d^2 = 16^2 + 18^2 - 2(16)(18)cos(145) </span>
Answer:
Explanation:
Hello.
In this case, since the force is defined in terms of the mass and acceleration by:
We can easily compute the mass by solving for it:
Whereas the force is 182 N (kg*m/s²) and the acceleration is 13 m/s², therefore, we obtain:
Best regards.
The transition from gas to liquid is called condensation. An example would be water droplets forming on an ice cold glass placed in room temperature.
Answer:
Electromagnetic waves are created by a charged particle that generates an electric field. The electric field creates a magnetic field. As the charged particle moves, the electric field and magnetic field keep changing, which causes the wave to move.
Explanation:
<em> I just answered the question and this is the sample response </em>