Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
0.1111 W/m²
Explanation:
If all other parameters are constant, sound intensity is inversely proportional to the square of the distance of the sound. That is,
I ∝ (1/r²)
I = k/r²
Since k can be the constant of proportionality. k = Ir²
We can write this relation as
I₁ × r₁² = I₂ × r₂²
I₁ = 0.25 W/m²
r₁ = 16 m
I₂ = ?
r₂ = 24 m
0.25 × 16² = I₂ × 24²
I₂ = (0.25 × 16²)/24²
I₂ = 0.1111 W/m²
Refer to the diagram shown below.
W = 87.5 N, the weight of the sandwiched board.
μ = 0.622, the static coefficient of friction.
From the free body diagram of the sandwiched board, obtain
2μF = W
F = W/(2μ) = 87.5/(2*0.622) = 70.34 N
Answer: 70.34 N
Answer:
v = 3(m1 - 2m2)/(m1 + m2)
Explanation:
Parameters given:
Velocity of first toy car with mass m1, u1 = 3 m/s (taking the right direction as the positive axis)
Velocity of second toy car with mass m2, u2 = -6 m/s (taking the left direction as the negative x axis)
Using conservation of momentum principle:
Total initial momentum = Total final momentum
m1*u1 + m2*u2 = m1*v1 + m2*v2
Since they stick together after collision, they have the same final velocity.
m1*3 + (m2 * -6) = m1*v + m2*v
3m1 - 6m2 = (m1 + m2)v
v = (3m1 - 6m2) / (m1 + m2)
v = 3(m1 - 2m2) / (m1 + m2)
Answer:
Honey is another natural healthy "remedy" it can help your throat and stuff if it is sore.
Explanation: