Answer:

Explanation:
Hello,
In this case, given the acid, we can suppose a simple dissociation as:

Which occurs in aqueous phase, therefore, the law of mass action is written by:
![Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
That in terms of the change
due to the reaction's extent we can write:

But we prefer to compute the Kb due to its exceptional weakness:

Next, the acid dissociation in the presence of the base we have:
![Kb=\frac{[OH^-][HA]}{[A^-]}=1x10^{6}=\frac{x*x}{0.1-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BOH%5E-%5D%5BHA%5D%7D%7B%5BA%5E-%5D%7D%3D1x10%5E%7B6%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.1-x%7D)
Whose solution is
which equals the concentration of hydroxyl in the solution, thus we compute the pOH:
![pOH=-log([OH^-])=-log(0.0999)=1](https://tex.z-dn.net/?f=pOH%3D-log%28%5BOH%5E-%5D%29%3D-log%280.0999%29%3D1)
Finally, since the maximum scale is 14, we can compute the pH by knowing the pOH:

Regards.
If X is an equivalent base to H₂O
HX is an equivalent acid to H₃O⁺
HX is a stronger acid than H₃O⁺
HX is not an acid
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
X⁻ is a weaker base than H₂O
X⁻ is not a base.
The correct response or this is
X⁻ is a stronger base than H₂O
HX is a weaker acid than H₃O⁺
Is an imbalance of electric charges within or on the surface of a material. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is named in contrast with current electricity, which flows through wires or other conductors and transmits energy.[1]
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation:
AB → A + B
In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction. The arrow shows the direction in which the reaction occurs.