1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
8

2) A common "rule of thumb" -- for many reactions around room temperature is that the

Chemistry
1 answer:
babunello [35]2 years ago
8 0

The question is incomplete. The complete question is :

A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)

Solutions :

If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.

Let's take :

$T_1=300 \ K$

$T_2=310 \ K$

The rate constant = $K_1 \text{ and } K_2$ respectively.

The activation energy and the Arhenius factor is same.

So by the arhenius equation,

$K_1 = Ae^{-\frac{E_a}{RT_1}}$  and $K_2 = Ae^{-\frac{E_a}{RT_2}}$

$\Rightarrow \frac{K_1}{K_2}= \frac{e^{-\frac{E_a}{RT_1}}}{e^{-\frac{E_a}{RT_2}}} $

$\Rightarrow \frac{K_1}{K_2}=  e^{-\frac{E_a}{R}\left(\frac{1}{T_1}-\frac{1}{T_2}\right)}$

$\Rightarrow \ln \frac{K_1}{K_2}= - \frac{E_a}{R} \left(\frac{1}{T_1} -\frac{1}{T_2} \right)$

$\Rightarrow \ln \frac{K_2}{K_1}=  \frac{E_a}{R} \left(\frac{1}{T_1} -\frac{1}{T_2} \right)$

Given, $E_a = 0.269$ J/mol

           R = 8.314 J/mol/K

$\Rightarrow \ln \frac{K_2}{K_1}=  \frac{0.269}{8.314} \left(\frac{1}{300} -\frac{1}{310} \right)$

$\Rightarrow \ln \frac{K_2}{K_1}=  \frac{0.269}{8.314} \times \frac{10}{300 \times 310}$

$\Rightarrow \ln \frac{K_2}{K_1}=  3.479 \times 10^{-6}$

$\Rightarrow  \frac{K_2}{K_1}=  e^{3.479 \times 10^{-6}}$

$\Rightarrow  \frac{K_2}{K_1}=  1$

∴ $K_2=K_1$

So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.

You might be interested in
Combustion analysis of a 13.42-g sample of the unknown organic compound (which contains only carbon, hydrogen, and oxygen) produ
kirza4 [7]

<u>Answer:</u> The molecular formula for the given organic compound is C_{18}H_{20}O_2

<u>Explanation:</u>

The chemical equation for the combustion of hydrocarbon having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2=39.61g

Mass of H_2O=9.01g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

<u>For calculating the mass of carbon:</u>

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 39.61 g of carbon dioxide, \frac{12}{44}\times 39.61=10.80g of carbon will be contained.

<u>For calculating the mass of hydrogen:</u>

In 18 g of water, 2 g of hydrogen is contained.

So, in 9.01 g of water, \frac{2}{18}\times 9.01=1.00g of hydrogen will be contained.

Mass of oxygen in the compound = (13.42) - (10.80 + 1.00) = 1.62 g

To formulate the empirical formula, we need to follow some steps:

  • <u>Step 1:</u> Converting the given masses into moles.

Moles of Carbon = \frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{10.80g}{12g/mole}=0.9moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{1g}{1g/mole}=1moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{1.62g}{16g/mole}=0.10moles

  • <u>Step 2:</u> Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.10 moles.

For Carbon = \frac{0.9}{0.10}=9

For Hydrogen = \frac{1}{0.10}=10

For Oxygen = \frac{0.10}{0.10}=1

  • <u>Step 3:</u> Taking the mole ratio as their subscripts.

The ratio of C : H : O = 9 : 10 : 1

Hence, the empirical formula for the given compound is C_9H_{10}O

For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.

The equation used to calculate the valency is :

n=\frac{\text{Molecular mass}}{\text{Empirical mass}}

We are given:

Mass of molecular formula = 268.34 g/mol

Mass of empirical formula = 134 g/mol

Putting values in above equation, we get:

n=\frac{268.34g/mol}{134g/mol}=2

Multiplying this valency by the subscript of every element of empirical formula, we get:

C_{(9\times 2)}H_{(10\times 2)}O_{(1\times 2)}=C_{18}H_{20}O_2

Thus, the molecular formula for the given organic compound is C_{18}H_{20}O_2.

3 0
3 years ago
Given 7.40 g of butanoic acid and excess ethanol, how many grams of ethyl butyrate would be synthesized, assuming a complete 100
Dafna11 [192]
On complete conversion (100% yield) 9.75 g of ethyl butyrate will be produced. Below is the solution.....

4 0
3 years ago
The energy of a photon is ________ proportional to its wavelength. The energy of a photon is ________ proportional to its freque
topjm [15]

Answer: Inversely  ,   Directly

Explanation:

The energy of a photon is inversely proportional to its wavelength and directly proportional to its frequency.

As can be seen from this equation;

E = hv  = h c / ∧

Where E = Energy of a photon

           v = Frequency

           h = Planck Constant

           c = speed of light

           ∧  = Wave length

4 0
3 years ago
With the kinetic energy of a sample increases the____ will also increase
klemol [59]

Answer:

Its Temperature.

Explanation:

  • Kinetic energy is the energy possessed by a body while in motion. Potential energy on the other hand is the energy possessed by a body based on its position.
  • Kinetic energy of a body is determined by the equation; K.E = 3RT/2;
  • From the equation, kinetic energy is directly proportional to the temperature of the system and therefore an increase in the kinetic energy of a sample causes an increase in temperature of the system.
4 0
2 years ago
When you mixed 20 grams of magnesium and an excess of nitric acid, 1.7 grams of hydrogen was actually produced. What is the perc
Kitty [74]
Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen. 

From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.

*The case is impossible because the actual yield is greater than the theoretical yield.

If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E. 
6 0
3 years ago
Read 2 more answers
Other questions:
  • Why don't we estimate an additional number on an electrical balance?​
    12·1 answer
  • Good morning, I have a question..
    5·1 answer
  • A weather balloon is inflated to a volume of 2.2 x 10^3 L with 37.4 g of helium. What is the density of helium in grams per lite
    13·1 answer
  • For the following reaction: Fe2O3 + 3CO --&gt; 2Fe + 3CO2 how many grams of Fe2O3 is needed to produce 111 g of Fe?
    7·1 answer
  • How does Controlled fires help prevent real forest fires?
    15·1 answer
  • What what is the density. Correct units please.
    9·1 answer
  • Intermolecular forces exist between what?
    13·1 answer
  • During an investigation, similar glow sticks were placed in two beakers containing water at different temperatures. A record of
    10·2 answers
  • Give the following for SO2 and BrF5:
    10·1 answer
  • How many double bonds does CCL2H2 have?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!