Answer:
pOH = 0.3
Explanation:
As KOH is a strong base, the molar concentration of OH⁻ is equal to the molar concentration of the solution. That means that in this case:
With that information in mind we can<u> calculate the pOH </u>by using the following formula:
Answer:
15 moles of ammonium sulfate would be formed from 30 moles of ammonia.
Explanation:
Given data:
Number of moles of ammonium sulfate formed = ?
Number of moles of ammonia = 30.0 mol
Solution:
Chemical equation:
2NH₃ + H₂SO₄ → (NH₄)₂SO₄
Now we will compare the moles of ammonium sulfate with ammonia.
NH₃ : (NH₄)₂SO₄
2 : 1
30.0 : 1/2×30.0 = 15.0 mol
So 15 moles of ammonium sulfate would be formed from 30 moles of ammonia.
We assume that we have Ka= 4.2x10^-13 (missing in the question)
and when we have this equation:
H2PO4 (-) → H+ + HPO4-
and form the Ka equation we can get [H+]:
Ka= [H+] [HPO4-] / [H2PO4] and we have Ka= 4.2x10^-13 & [H2PO4-] = 0.55m
by substitution:
4.2x10^-13 = (z)(z)/ 0.55
z^2 = 2.31x 10^-13
z= 4.81x10^-7
∴[H+] = 4.81x10^-7
when PH equation is:
PH= -㏒[H+]
= -㏒(4.81x10^-7) = 6.32
Answer:
Sorry for disrespecting you but i don't know your language. I want to help but my problem is your language IM SO SORRY
Answer: when reactants and products are gases at STP.
Justification:
1) STP stands for standard temperature (0°) and pressure (1 atm).
2) According to the kinetic molecular theory of the gases, and as per Avogadro's principle, equal volumes of gases, at the same temperature and pressure, have the same number of molecules.
3) Since the coefficients in a balanced chemical equation represent number of moles, when reactants and products are gases at the same temperature and pressure, the mole ratios are the same that the volume ratios, and then the coefficients of the chemical equation represent the volume ratios.