Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
Answer:
sodium sulfate
Explanation:
For naming an ionic compound with polyatomic anion, the metal is written first using its element name followed by name of the polyatomic anion. Therefore, the compound with Na+Na+ cation and SO2−4SO42− anion is named as sodium sulfate.
It suggests that life changes over time by showing different animals at different stages in their life, also giving more than one example on how they can change during early development and throughout their lives
Speed in km/hr = 15 x 18
------------
5
= 54 km/hr.
Hope this helps!
Answer:
e. None of these.
Explanation:
Hey there!
In this case, since the Henry's law is defined in terms of pressure, henry's constant and pressure, as shown below:

Whereas C is the concentration, KH the Henry's constant and P the pressure, we infer that the concentration of a gas solution is directly proportional to the pressure, which is not the group choices, therefore, the answer is e. None of these.
Best regards!