Answer:
b is the correct option.
Explanation:
Steam distillation is a distillation in which water is added to the mixture being distilled so that water and the organic compounds vaporize, condense and are collected together. This process is applied for the purification of those materials specially the organic materials which are temperature sensitive. The normal boiling method can not be implemented as these materials starts to decompose on high temperatures. This method has got a lot of applications in industries like petrolium refineries and the oil extraction from some plants etc.
Answer:
Please refer to the figure.
Explanation:
The crucial point here is to calculate the enclosed current. If the current I is flowing through the whole cross-sectional area of the wire, the current density is

The current density is constant for different parts of the wire. This idea is similar to that of the density of a glass of water is equal to the density of a whole bucket of water.
So,

This enclosed current is now to be used in Ampere’s Law.

Here,
represents the circular path of radius r. So we can replace the integral with the circumference of the path,
.
As a result, the magnetic field is

a = 3.09 m/s²
<h3>Explanation</h3>
This question doesn't tell anything about how long it took for the car to go through 105 meters. As a result, the <em>timeless </em>suvat equation is likely what you need for this question.
In the <em>timeless</em> suvat equation,

where
is the acceleration of the car;
is the <em>final</em> velocity of the car;
is the <em>initial</em> velocity of the car; and
is the displacement of the car.
Note that <em>v</em> and <em>u</em> are velocities. Make sure that you include their signs in the calculation.
In this question,
Apply the <em>timeless</em> suvat equation:
.
The value of
is greater than zero, which is reasonable. Velocity of the car is negative, meaning that the car is moving backward. The car now moves to the back at a slower speed. Effectively it accelerates to the front. Its acceleration shall thus be positive.
The total flux through the cylinder is zero.
In fact, the electric flux through a surface (for a uniform electric field) is given by:

where
E is the intensity of the electric field
A is the surface
is the angle between the direction of E and the perpendicular to the surface, whose direction is always outwards of the surface.
We can ignore the lateral surface of the cylinder, since the electric field is parallel to it, therefore the flux through the lateral surface of the cylinder is zero (because
and
).
On the other two surfaces, the flux is equal and with opposite sign. In fact, on the first surface the flux will be

where r is the radius, and where we have taken
since the perpendicular to the surface is parallel to the direction of the electric field, so
. On the second surface, however, the perpendicular to the surface is opposite to the electric field, so
and
, therefore the flux is

And the net flux through the cylinder is
