1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nlexa [21]
3 years ago
8

Which option accurately describes an unbalanced force?

Physics
2 answers:
nexus9112 [7]3 years ago
7 0

Answer:

A 2-N force presses down on the cement block at the same time as a 1.5-N force presses up on the cement block.

Explanation:

<u>Option 1:</u> each cement supports equal weight of downward force even when the building pattern changes, they support more weight. This implies more cement more weight they can support.

<u>Option 2:</u> conventional house foundation is formed by four rows of cement block, in this case there is Three rows of cement blocks. since the house rest on it, all forces are balanced.

<u>Option 3:</u> <em>downward force on a block is 2N while the upward force is 1.5N. Therefore, the downward and upward force on the cement block are not equal, which correctly describes an unbalanced force.</em>

<u>Option 4:</u> the downward force on a foundation is 3,000N and the upward force is not known. Therefore, we cannot asertain whether the force is balanced or unbalanced

horrorfan [7]3 years ago
5 0

Answer:

each cement block supports a 2n force

Explanation:

You might be interested in
g The international space station has an orbital period of 93 minutes at an altitude (above Earth's surface) of 410 km. A geosyn
krok68 [10]

Answer:

r = 4.21 10⁷ m

Explanation:

Kepler's third law It is an application of Newton's second law where the forces of the gravitational force, obtaining

            T² = (\frac{4\pi }{G M_s} ) r³             (1)

           

in this case the period of the season is

            T₁ = 93 min (60 s / 1 min) = 5580 s

            r₁ = 410 + 6370 = 6780 km

            r₁ = 6.780 10⁶ m

for the satellite

           T₂ = 24 h (3600 s / 1h) = 86 400 s

if we substitute in equation 1

            T² = K r³

            K = T₁²/r₁³

            K = \frac{ 5580^2}{ (6.780 10^6)^2}

            K = 9.99 10⁻¹⁴ s² / m³

we can replace the satellite values

            r³ = T² / K

            r³ = 86400² / 9.99 10⁻¹⁴

            r = ∛(7.4724 10²²)

            r = 4.21 10⁷ m

this distance is from the center of the earth

7 0
3 years ago
Many minerals, such as silver, are good conductors of heat and electricity. How could technology use this property to help ident
Aleks [24]

Answer:

This property could be used to create technologically-advanced tools or machines that could easily locate the mineral deposits.

Explanation:

Mineral deposits are hard to find, unless you have the skill or the proper tools in locating them. This is the reason why many people are mining in order to explore the different areas where they could find these deposits.

If one would consider the property of minerals, such as being good conductors of heat and electricity,<u> then they could create a tool or machine that would aid in their exploration.</u> Inventors could probably come up with a sensitive detector which signals when it reaches an area of high heat and electric conductivity. Since most minerals such as <em>gold, silver, copper, galena, bornite </em>and the like have this property, then miners will have a lesser amount of time looking for them.

If this technology will be implemented, though, regulation policy must be strictly implemented because it might lead to<em> over-mining</em> thus leading to the depletion of mineral deposits.

3 0
3 years ago
9. A plane starts at rest &amp; accelerates along the ground before takeoff. It
Phoenix [80]

Answer:

  9.877 m/s^2

Explanation:

The acceleration can be computed from ...

  d = (1/2)at^2

  (1600 m) = (1/2)a(18 s)^2

  a = (1600/162) m/s^2 ≈ 9.877 m/s^2

6 0
3 years ago
Ill give brainliest! 1. Which item below describes a quick change to
stiks02 [169]
The best answer to go with is b
7 0
3 years ago
Read 2 more answers
A quarterback is set up to throw the football to a receiver who is running with a constant velocity v⃗ rv→rv_r_vec directly away
Artist 52 [7]

Answer:

a) V_o,y = 0.5*g*t_c

b) V_o,x = D/t_c - v_r

c) V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

d)  Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

Explanation:

Given:

- The velocity of quarterback before the throw = v_r

- The initial distance of receiver = r

- The final distance of receiver = D

- The time taken to catch the throw = t_c

- x(0) = y(0) = 0

Find:

a) Find V_o,y, the vertical component of the velocity of the ball when the quarterback releases it.  Express V_o,y in terms of t_c and g.

b) Find V_o,x, the initial horizontal component of velocity of the ball.   Express your answer for V_o,x in terms of D, t_c, and v_r.

c) Find the speed V_o with which the quarterback must throw the ball.  

   Answer in terms of D, t_c, v_r, and g.

d) Assuming that the quarterback throws the ball with speed V_o, find the angle Q above the horizontal at which he should throw it.

Solution:

- The vertical component of velocity V_o,y can be calculated using second kinematics equation of motion:

                               y = y(0) + V_o,y*t_c - 0.5*g*t_c^2

                              0 = 0 + V_o,y*t_c - 0.5*g*t_c^2

                               V_o,y = 0.5*g*t_c

- The horizontal component of velocity V_o,x witch which velocity is thrown can be calculated using second kinematics equation of motion:

- We know that V_i, x = V_o,x + v_r. Hence,

                               x = x(0) + V_i,x*t_c

                               D = 0 + V_i,x*t_c

                               V_o,x + v_r = D/t_c

                                V_o,x = D/t_c - v_r

- The speed with which the ball was thrown can be evaluated by finding the resultant of V_o,x and V_o,y components of velocity as follows:

                           V_o = sqrt ( V_o,x^2 + V_o,y^2)

                          V_o = sqrt ( (D/t_c - v_r)^2 + (0.5*g*t_c)^2)

       

- The angle with which it should be thrown can be evaluated by trigonometric relation:

                            tan(Q) = ( V_o,y / V_o,x )

                            tan(Q) = ( (0.5*g*t_c)/ (D/t_c - v_r) )

                                   Q = arctan ( g*t_c^2 / 2*(D - v_r*t_c) )

                           

                               

6 0
3 years ago
Other questions:
  • What is the name for all the electromagnetic waves that exist
    9·1 answer
  • Question 11 of 11 | Page 11 of 11
    13·1 answer
  • A figure skater begins spinning counterclockwise at an angular speed of 3.2 π rad/s. During a 4.2 s interval, she slowly pulls h
    9·1 answer
  • A 1.41 µF capacitor charged to 51 V and a 2.49 µF capacitor charged to 31 V are connected to each other, with the two positive p
    14·2 answers
  • What is the density of the football while it is deflated?
    12·2 answers
  • At the bottom of a large cylindrical tank filled with fresh water the gauge pressure is 11.6 psi. What is the height (in feet) o
    5·1 answer
  • The electric potential at a point equidistant from two particles that have charges +Q and –Q is larger than zero. a. smaller tha
    8·1 answer
  • The drawing shows a tire of radius R on a moving car
    8·1 answer
  • Un resorte se alarga 5 cm bajo la acción de una fuerza de 39,2 N. ¿Cuál es la constante del resorte? Si ahora la fuerza es 68,6
    10·1 answer
  • Between which of the following surfaces would the force of friction be
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!