8x²+3y²=24
8x²+3y²-24=0
Let x be 1 ,
Therefore
8+3y²-24=0
3y²-16=0
3y²=16
y²=16/3
y=4/1.7
y=40/17
<em><u>Take</u></em><em><u> </u></em><em><u>different</u></em><em><u> </u></em><em><u>values</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>&</u></em><em><u>y</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>plot</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>graph</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em>
Triangle 1 has vertices at (A, B), (C, D), and (E, F). Triangle 2 has vertices at (A,-B), (C,-D), and (E,-F). What can you concl
almond37 [142]
Answer:
Triangle 2 is a transformation from Triangle 1, and has been reflected across the x-axis.
Step-by-step explanation:
We can conclude that Triangle 2 is a reflection across the x-axis because the x values stayed the same but the y values are negative.
In a reflection across the x-axis, the x values will stay the same. But, since it is flipped across the x-axis, the y values will become negative.
So, Triangle 2 is a reflection across the x-axis.
Rocky because of the product rule which says that when multiplying two terms with the same base you add the exponents.
Answer:
1- 8/15= 7/15 = 0.4(6)
1.2 + 2/3 = 28/15 = 1.8 (6)