Answer:
A
Explanation:
This is because in the graph shown line A has a quite greater impact of refraction than line B .
Hence, we can conclude that line A has the greater reaction at a faster rate.
279 g * (1 mol/180.559g glucose) * (2 mol ethanol/1 mol glucose) * (46.068g ethanol/1mol) =
142 g ethanol produced
The Boiling Point of 2-methylpropane is approximately -11.7 °C, while, Boiling Point of <span>2-iodo-2-methylpropane is approximately 100 </span>°C.
As both compounds are Non-polar in nature, So there will be no dipole-dipole interactions between the molecules of said compounds.
The Interactions found in these compounds are London Dispersion Forces.
And among several factors at which London Dispersion Forces depends, one is the size of molecule.
Size of Molecule:
There is direct relation between size of molecule and London Dispersion forces. So, 2-iodo-2-methylpropane containing large atom (i.e. Iodine) experience greater interactions. So, due to greater interactions 2-iodo-2-methylpropane need more energy to separate from its partner molecules, Hence, high temperature is required to boil them.
<h3><u>Answer</u>;</h3>
≈ 4.95 g/L
<h3><u>Explanation;</u></h3>
The molar mass of KCl = 74.5 g/mole
Therefore; 0.140 moles will be equivalent to ;
= 0.140 moles × 74.5 g/mole
= 10.43 g
Concentration in g/L
= mass in g/volume in L
= 10.43/2.1
= 4.9667
<h3> <u> ≈ 4.95 g/L</u></h3>
Atoms are made up of three subatomic particles called protons, neutrons, and electrons.
Protons and neutrons are located in the nucleus.
All protons have a positive charge.
All neutrons have no charge or are neutral.
Electrons orbit around the nucleus and have a negative charge.