Answer:
d- 334 kJ/g.
Explanation:
You can detect it from the units of the different choices.
a- has the unit J/g.°C that is the unit of the specific heat capacity (c).
b- has the unit Kelvin that is the unit of temperature.
c- has the unit g/mol which is the unit of the molar mass.
d- has the unit kJ/g which is the unit of the enthalpy divided by the no. of rams that is the specific entha;py of fusion.
<em>So, the right choice is: d- 334 kJ/g.</em>
I need a little more context but I believe you are correct
Answer:
Explanation:
Using Dalton's law of partial pressure
P total pressure = Pressure of helium + Pressure of neon + Vapor pressure of water
P = 28.3 mmHg, Pressure of helium = 381 mmHg, Vapor pressure of water at 28°C
791 mmHg - 381 mmHg - 28.3 mmHg = Pressure of neon
Pressure of neon = 381.7 mmHg
Answer:
N₂ = 0.7515atm
O₂ = 0.1715atm
NO = 0.0770atm
Explanation:
For the reaction:
N₂(g) + O₂(g) ⇄ 2NO(g)
Where Kp is defined as:
Pressures in equilibrium are:
N₂ = 0.790atm - X
O₂ = 0.210atm - X
NO = 2X
Replacing in Kp:
0.0460 = [2X]² / [0.790atm - X] [0.210atm - X]
0.0460 = 4X² / 0.1659 - X + X²
0.0460X² - 0.0460X + 7.6314x10⁻³ = 4X²
-3.954X² - 0.0460X + 7.6314x10⁻³ = 0
Solving for X:
X = - 0.050 → False answer. There is no negative concentrations.
X = <em>0.0385 atm</em> → Right answer.
Replacing for pressures in equilibrium:
N₂ = 0.790atm - X = <em>0.7515atm</em>
O₂ = 0.210atm - X = <em>0.1715atm</em>
NO = 2X = <em>0.0770atm</em>