Answer:
8684.2 kg/m³
Explanation:
Tension in the rope as a result of the weight = 8.86 N
Tension in the rope when submerge in water = 7.84
upthrust = 8.86 - 7.84 =1.02 N = mass of water displaced × acceleration due to gravity
Mass of water displaced = 1.02 / 9.81 = 0.104 kg
density of water = mass of water / volume of water
make volume subject of the formula
volume of water displaced = mass / density ( 1000) = 0.104 / 1000 = 0.000104 m³
volume of the object = volume of water displaced
density of the object = mass of the object / volume of the object = (8.86 / 9.81) / 0.000104 = 0.9032 / 0.000104 = 8684.2 kg/m³
Answer:
No
Explanation:
You could try to give it enough to fill all valence electrons in all of the atoms in the conductor, but practically this could not be achieved.
The amount of heat needed to increase the temperature of a solid sphere of diameter 2D of the same metal from 4°C to 7°C is is 8 times the initial amount of heat.
<h3>What is heat?</h3>
The temperature increment will lead to the increase in the internal energy of the object. This internal energy is the heat.
Given is the change in temperature ΔT = 7-4 =3°C., diameter D to 2D,
Q = Cp x ρ(4π/3)D³ x 3..................(1)
and Q' = Cp x ρ(4π/3)(2D)³ x 3
Q' = Cp x ρ(4π/3)8D³x 3..................(2)
Dividing both the equation, we have
Q' / Q =8
Q' = 8Q
Thus, the amount of heat needed to increase the temperature of a solid sphere of diameter 2D of the same metal from 4°C to 7°C is 8 times the initial amount of heat.
Learn more about heat.
brainly.com/question/1429452?
#SPJ1