Answer:
- Third choice:<em> energy present in the glucose and oxygen that is not needed for the formation of carbon dioxide and water is released to form energy/ATP.</em>
Explanation:
<u>1) Chemical equation (given):</u>
- C₆H₁₂O₆ + 6 O₂ --> 6 CO₂ + 6 H₂O + energy
<u>2) Chemical potential energy:</u>
Each compound stores chemical potential energy. This energy is stored in the chemical bonds.
Due to every substance has its own unique chemical potential energy, when a chemical reaction takes plase, yielding to the change of some substances, some energy is absorbed (when bonds are formed) and some energy is released (when bonds are broken).
<u>3) Conservation of energy:</u>
Then, if the sum of the bond energies of the final products is less than the sum of the bond energies of the reactants, the<em> law of conservation of energy</em> rules that the difference between the total energies of the products and reactants must be released to the surroundings.
That is what is happening in the given reaction:
- C₆H₁₂O₆ + 6 O₂ --> 6 CO₂ + 6 H₂O + energy
The term energy in the product side means that energy is conserved because it is being released due to the the glucose and oxygen (reactant side) have more energy stored in their bonds than the energy needed for the formation of carbon dioxide and water, so that excess of energy is released to form energy/ATP.
<u>Summarizing:</u>
- The energy on the product side added to the energy of carbon dioxide and water equals the energy of the glucose and oxygen and the final balance is:
- ∑ Energy of the reactants = ∑energy of the products + released energy, supporting the law of conservation of energy.
Carbon normally bonded to Hydrogen, Nitrogen, Oxygen
Answer:
The kinetic energy of the two stones is 320 J
Explanation:
Kinetic energy is the energy that a body possesses due to its movement. So it is the capacity or work that allows an object to go from being at rest, or still, to moving at a certain speed.
In other words, the kinetic energy of an object is that which is produced due to its motion and depends on its mass and velocity as follows:

where the kinetic energy Ec is measured in joules (J), the mass m is measured in kilograms (kg) and the velocity v in meters/second (m/s).
In this case you know that a 20 kg curling stone is sliding in a positive direction at 4 m/s. So:
Replacing you have:

Ec₁= 160 J
A second curling stone slides at the same speed but in the opposite direction. So:
Replacing you have:

Ec₂= 160 J
The kinetic energy of the two stones is calculated as:
Ec= Ec₁ + Ec₂
Ec= 160 J + 160 J
Ec= 320 J
<u><em>The kinetic energy of the two stones is 320 J</em></u>
Because of different chemical reactions between the elements<span />