Answer:
325
Explanation:
velocity = 3250 Hz x 0.1 m
Answer:- Mole ratio of D to A is 4:3.
Explanations:- Mole ratio for a chemical reaction is the ratio of the coefficients.
The given generic chemical reaction is:

The numbers written in front of each chemical species in the chemical reaction are their moles. For the given generic chemical reaction the coefficient of A is 3 and that of B is 1. So, the mole ratio of A to B is 3:1.
Similarly if we want to write the mole ratio of C to D then it is 1:4.
We are asked to write the mole ratio of D to A. So, like the other ratios, the mole ratio of D to A is 4:3 as the coefficient of D is 4 and A is 3.
Answer:
Explanation:
1-butanol has 4 carbon atoms with an OH group at the first carbon atom.
Dichlorodifluoromethane has 1 carbon atom with 2 chlorine atoms and 2 fluorine atoms.
The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = 
h = Planck's constant = 
c = speed of light = 
= wavelength of light = ?
Putting in the values:


Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm