Answer:
1.324 × 10⁷ m
Explanation:
The centripetal acceleration, a at that height above the earth equal the acceleration due to gravity, g' at that height, h.
Let R be the radius of the orbit where R = RE + h, RE = radius of earth = 6.4 × 10⁶ m.
We know a = Rω² and g' = GME/R² where ω = angular speed = 2π/T where T = period of rotation = 1 day = 8.64 × 10⁴s (since the shuttle's period is synchronized with that of the Earth's rotation), G = gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², ME = mass of earth = 6 × 10²⁴ kg. Since a = g', we have
Rω² = GME/R²
R(2π/T)² = GME/R²
R³ = GME(T/2π)²
R = ∛(GME)(T/2π)²
RE + h = ∛(GMET²/4π²)
h = ∛(GMET²/4π²) - RE
substituting the values of the variables, we have
h = ∛(6.67 × 10⁻¹¹ Nm²/kg² × 6 × 10²⁴ kg × (8.64 × 10⁴s)²/4π²) - 6.4 × 10⁶ m
h = ∛(2,987,477 × 10²⁰/4π² Nm²s²/kg) - 6.4 × 10⁶ m
h = ∛75.67 × 10²⁰ m³ - 6.4 × 10⁶ m
h = ∛(7567 × 10¹⁸ m³) - 6.4 × 10⁶ m
h = 19.64 × 10⁶ m - 6.4 × 10⁶ m
h = 13.24 × 10⁶ m
h = 1.324 × 10⁷ m
Answer:
Explanation:
Block A sits on block B and force is applied on block A . Block A will experience two forces 1) force P and 2 ) friction force in opposite direction of motion . Block B will experience one force that is force of friction in the direction of motion .
Let force on block A be P . friction force on it will be equal to kinetic friction, that is μ mg , where μ is coefficient of friction and m is mass of block A
friction force = .4 x 2.5 x 9.8
= 9.8 N
net force on block A = P - 9.8
acceleration = ( P - 9.8 ) / 2.5
force on block B = 9.8
acceleration = force / mass
= 9.8 / 6
for common acceleration
( P - 9.8 ) / 2.5 = 9.8 / 6
( P - 9.8 ) / 2.5 = 1.63333
P = 13.88 N .
Answer:
False
Explanation:
Higher frequency signals have shorter wavelengths. Hence, the 64 GHz signal will have a shorter wavelength than the 57 GHz signal.
Frequency and wavelength are inversely proportional meaning as frequency increases wavelength decreases and as frequency decreases wavelength increases.
Cheers.
The answer may be pair or group