Answer:
The specific heat capacity is q_{L}=126.12kJ/kg
The efficiency of the temperature is n_{TH}=0.67
Explanation:
The p-v diagram illustration is in the attachment
T_{H} means high temperature
T_{L} means low temperature
The energy equation :
= R*
in(
/
)



The specific heat capacity:
=q_{h}*(T_{L}/T_{H})
q_{L}=378.36 * (400/1200)
q_{L}=378.36 * 0.333
q_{L}=126.12kJ/kg
The efficiency of the temperature will be:
=1 - (
/
)
n_{TH}=1-(400/1200)
n_{TH}=1-0.333
n_{TH}=0.67
In general, how do you find the average velocity of any object falling in a vacuum? (Assume you know the final velocity.) Multiply the final velocity by final time. 3. Calculate : Distance, average velocity, and time are related by the equation, d = v • t A
Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
I believe it is, All of the above.