Answer:
See explanation
Explanation:
From the formula;
0.693/t1/2 = 2.303/t log (Ao/A)
t1/2 = half life of Sodium-24
Ao = initial activity of Sodium-24
A= activity of Sodium-24 at time = t
So,
0.693/15 = 2.303/15 log (800/A)
0.0462 = 0.1535 log (800/A)
0.0462/0.1535 = log (800/A)
0.3 = log (800/A)
Antilog(0.3) = (800/A)
1.995 = (800/A)
A = 800/1.995
A = 401 Bq
ii) 0.693/15 = 2.303/30 log (800/A)
0.0462 = 0.0768 log (800/A)
0.0462/0.0768 = log (800/A)
0.6 = log (800/A)
Antilog (0.6) = (800/A)
3.98 = (800/A)
A = 800/3.98
A = 201 Bq
iii)
0.693/15 = 2.303/45 log (800/A)
0.0462 = 0.0512 log (800/A)
0.0462/0.0512 = log (800/A)
0.9 = log (800/A)
Antilog (0.9) = (800/A)
7.94 = (800/A)
A = 800/7.94
A= 100.8 Bq
iv)
0.693/15 = 2.303/60 log (800/A)
0.0462 = 0.038 log (800/A)
0.0462/0.038 = log (800/A)
1.216 = log (800/A)
Antilog(1.216) = (800/A)
16.44 = (800/A)
A = 800/16.44
A = 48.66 Bq
Answer:
correct answer is C
Explanation:
The photoelectric effect was correctly described by Einstein, where he assumes that the light ray is formed by photons that are articulated and behaves like an elastic shock, the energy of this particular is described by the Planck equation.
K = h f + Ф
where k is the kinetic energy of the electrons, f the frequency of the photons and Ф the work function of the material.
In this experiment, red light removes electrons, it is assumed that each photon spreads an electron if we have another light with more energy and 10% more intense, that is, with 10% more shapes and each arcane an electron the number of electrons removed of; material is increased by 10%.
The change in wavelength and consequently the frequency
c = λ f
f = c /λ
therefore, the wavelength of the voilet λ = 400 num has a higher frequency and therefore more energy, so that the turned-on turns have more kinetic energy.
With these approaches we examine the final answers where the correct answer is C
The solution would be like this for this specific problem:
Given:
diffraction grating
slits = 900 slits per centimeter
interference pattern that
is observed on a screen from the grating = 2.38m
maxima for two different
wavelengths = 3.40mm
slit separation .. d =
1/900cm = 1.11^-3cm = 1.111^-5 m <span>
Whenas n = 1, maxima (grating equation) sinθ = λ/d
Grant distance of each maxima from centre = y ..
<span>As sinθ ≈ y/D y/D =
λ/d λ = yd / D </span>
∆λ = (λ2 - λ1) = y2.d/D - y1.d/D
∆λ = (d/D) [y2 -y1]
<span>∆λ = 1.111^-5m x [3.40^-3m] / 2.38m .. .. ►∆λ = 1.587^-8 m</span></span>
Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - 
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as

Here,
=frequency received by detector
=frequency of wave emitted by source
=velocity of detector
=velocity of source
v=velocity of sound wave
Replacing we have that,


Therefore the frequencty that will hear the passengers is 422Hz