Answer:
The AGC circuit operates with an input voltage range of 60 dB (5 mV p-p to 5 V p-p), with a fixed output voltage of 250 mV p-p.
Explanation:
Answer:
due to the expansion process and they contract during winter due to the contraction process. Explanation: Electric cables are the solids which exhibit the property of contraction and expansion.
Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.
Answer:
No
Explanation:
Heat engines are used for converting the heat into mechanical energy which is used for doing mechanical work.
The efficiency of heat engine is the fraction of mechanical energy to the thermal energy. The efficiency can not be 100% as some of the energy always loss due to friction and motion of the body parts of the heat engine.