Answer:
Velocity at inlet (V1) = 515.12 ft/s
Velocity at outlet (V2) = 941.43 ft/s
Explanation:
We are given;
Cp = 0.248 Btu/lbm·R.
T1 = 120 °F = 120 + 460 Rankine
= 580 °R
T2 = 70 °F = 70 + 460 R = 530 °R
P1 = 100 psia
P2 = 50 psia
From energy balance equation;
E_in - E_out = ΔEsyst
ΔEsyst = 0.
Thus, E_in = E_out
So,
M'[h1 + V1²/2] = M'[h2 + V2²/2]
M' will cancel out and we have;
[h1 + V1²/2] = [h2 + V2²/2]
V1²/2 - V2²/2 = h2 - h1 - - - - - (eq 1)
Now, h2 - h1 can be expressed as Cp(T2 - T1)
So, V1²/2 - V2²/2 = Cp(T2 - T1)
Also, in ideal gas, we know that;
P1V1/T1 = P2V2/T2
Making V the subject to obtain;
(P1•V1•T2)/(P2•T1) = V2
Putting this for V2 in eq (1), we obtain;
V1²/2 - [(P1•V1•T2)/(P2•T1)]²/2 = Cp(T2 - T1)
Multiply through by 2;
V1² - [(P1•V1•T2)/(P2•T1)]² = 2Cp(T2 - T1)
Lets make V1 the subject;
V1² - V1²[(P1•T2)/(P2•T1)]² = 2Cp(T2 - T1)
V1²[1 - [(P1•T2)/(P2•T1)]²] = 2Cp(T2 - T1)
V1² = 2Cp(T2 - T1)/[1 - [(P1•T2)/(P2•T1)]²]
V1 = √[2•0.248(70 - 120)/[1 - [(100•530)/(50•580)]²]•(25037ft²/lb²/Btu/lbm·R)]
I used the °F for the numerator temperature while I used °R for the denominator temperature so as for the units to cancel out properly.
V1 = √[-24.8)/[1 - 3.34)]•25037]
V1 = √[-24.8)/-2.34)]•25037]
V1 = √[(24.8/2.34)•25037]
V1 =√265349.4017094017
V1 = 515.12 ft/s
Now, to find V2, we recall that,
(P1•V1•T2)/(P2•T1) = V2
We will use the rankine value of temperature.
Thus;
V2 = (100•515.12•530)/(50•580)
= 27301360/29000 = 941.43 ft/s