1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
3 years ago
13

An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t

he condenser at 100 kPa. The temperature is 4508C at the entrance of the high-pressure and lowpressure turbines. The mass flow rate through the cycle is 1.74 kg/s. Determine the power used by pumps, the power produced by the cycle, the rate of heat transfer in the reheater, and the thermal efficiency of this system
Engineering
1 answer:
solniwko [45]3 years ago
7 0

Answer:

See the explanation below.

Explanation:

First find the enthalpies h₁, h₂, h₃, h₄, h₅, and h₆.

Find h₁:

Using Saturated Water Table and given pressure p₁ = 100 kPa

h₁ = 417.5 kJ/kg

Find h₂:

In order to find h₂, add the w_{p} to h₁, where  w_{p}  is the work done by pump and h₁ is the enthalpy computed above h₁ = 417.5 kJ/kg.

But first we need to compute  w_{p} To computer  

Pressures:

p₁ = 100 kPa

p₂ = 15,000 kPa

and

Using saturated water pressure table, the volume of water v_{f} = 1.0432

Dividing 1.0432/1000 gives us:

Volume of water = v₁ =  0.001043 m³/kg

Compute the value of h₂:

h₂ = h₁ + v₁ (p₂ - p₁)

    = 417.5 kJ/kg + 0.001043 m³/kg ( 15,000 kPa - 100 kPa)

    =  417.5 + 0.001043 (14900)

    = 417.5 + 15.5407

    = 433.04 kJ/kg

Find h₃  

Using steam table:

At pressure p₃ = 15000 kPa

and Temperature = T₃ = 450°C

Then h₃ = 3159 kJ/kg

The entropy s₃ = 6.14 kJ/ kg K

Find h₄

Since entropy s₃ is equal to s₄ So

s₄ = 6.14 kJ/kgK

To compute h₄

s₄ = s_{f} + x_{4} s_{fg}

x_{4} = s_{4} -s_{f} /s_{fg}

x_{4} = 6.14 -  2.45 / 3.89

x_{4}   = 0.9497

The enthalpy h₄:

h₄ = h_{f} +x_{4} h_{fg}

    = 908.4 + 0.9497(1889.8)

    =  908.4 + 1794.7430

    = 2703 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₃ = 6.14 kJ/ kg K and pressure p₄ = 2000 kPa

Find h₅

Using steam table:

At pressure p₅ = 2000 kPa

and Temperature = T₅ = 450°C

Then h₅  = 3358 kJ/kg

Find h₆:

Since the entropy s₅ = 7.286 kJ/kgK is equal s₆ to  So

s₆ = 7.286 kJ/kgK = 7.29 kJ/kgK

To compute h₆

s₆ = s_{f} + x_{6} s_{fg}

x_{6} = s_{6} -s_{f} /s_{fg}

x_{6} = 7.29 - 1.3028 / 6.0562

x_{6}   = 0.988

The enthalpy h₆:

h₆ = h_{f} +x_{6} h_{fg}

    = 417.51 + 0.988 (2257.5)

    = 417.51 + 2230.41

  h₆ =  2648 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₅ = 7.286 kJ/kgK and pressure p₅ = 2000 kPa

Compute power used by pump:

P_{p} is found by using:

mass flow rate = m =  1.74 kg/s

Volume of water = v₁ =  0.001043 m³/kg

p₁ = 100 kPa

p₂ = 15,000 kPa

P_{p}  = ( m ) ( v₁ ) ( p₂ - p₁ )

     = (1.74 kg/s) (0.001043 m³/kg) (15,000 kPa - 100 kPa)

     = (1.74 kg/s) (0.001043 m³/kg) (14900)

     = 27.04

P_{p} = 27 kW

Compute heat added q_{a} and heat rejected q_{r}  from boiler using computed enthalpies:

q_{a} = ( h₃ - h₂ ) + ( h₅ - h₄ )

      = ( 3159 kJ/kg - 433.04 kJ/kg ) + ( 3358 kJ/kg - 2703 kJ/kg )

      = 2726 + 655

      = 3381  kJ/kg

q_{r} =  h₆ - h₁

  = 2648 kJ/kg - 417.5 kJ/kg

  = 2232 kJ/kg

Compute net work

W_{net} = q_{a} - q_{r}

       = 3381  kJ/kg - 2232 kJ/kg

       = 1150 kJ/kg

Compute power produced by the cycle

mass flow rate = m =  1.74 kg/s

W_{net} = 1150 kJ/kg

P = m * W_{net}

  = 1.74 kg/s * 1150 kJ/kg

  = 2001 kW

Compute rate of heat transfer in the reheater

Q = m * ( h₅ - h₄ )

   =  1.74 kg/s * 655

   =  1140 kW

Compute Thermal efficiency of this system

μ_{t} = 1 - q_{r} /  q_{a}

   = 1 - 2232 kJ/kg / 3381  kJ/kg

   = 1 - 0.6601

   = 0.34

   = 34%

You might be interested in
The 150-lb man sits in the center of the boat, which has a uniform width and a weight per linear foot of 3 lb>ft. Determine t
irina1246 [14]

Answer:

M = 281.25 lb*ft

Explanation:

Given

W<em>man</em> = 150 lb

Weight per linear foot of the boat: q = 3 lb/ft

L = 15.00 m

M<em>max</em> = ?

Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):

∑ Fy = 0  (+↑)     ⇒    q'*L - W - q*L = 0

⇒       q' = (W + q*L) / L

⇒       q' = (150 lb + 3 lb/ft*15 ft) / 15 ft

⇒       q' = 13 lb/ft   (+↑)

The free body diagram of the boat is shown in the pic.

Then, we apply the following equation

q(x) = (13 - 3) = 10   (+↑)

V(x) = ∫q(x) dx = ∫10 dx = 10x   (0 ≤ x ≤ 7.5)

M(x) = ∫10x dx = 5x²  (0 ≤ x ≤ 7.5)

The maximum internal bending moment occurs when x = 7.5 ft

then

M(7.5) = 5(7.5)² = 281.25 lb*ft

8 0
4 years ago
What were the trade-offs and opportunity costs of one of Teasha’s economic decisions?
sergij07 [2.7K]

Answer:

Opportunity cost she loses the chance to get the degree. The trade- off is she gets to start a business.

Explanation:

3 0
3 years ago
The tank shown in the accompanying figure is being filled by pipes 1 and 2. If the water level is to remain constant, what is th
VMariaS [17]

Answer: 2.93 ft/sec

Explanation:  Calculate the volume/sec entering from the two inlets (Pipes 1 and 2), add them, and then calculate the flow in Pipe 3.

The table illustrates the approach.  I calculated the volume of each pipe for a 1 foot section with the indicated diameters, divided by 2 for the radius of each  using  V = πr²h.  Units of V are in^3/foot length.  Now we can multiply that volume by the flow rate, in ft/sec, to obtain the flow rate in in^3/sec.  

Add the two rates from Pipes 1 and 2 (62.14 in^3/sec) to arrive at the flow rate for Pipe 3 necessary to keep the water level constant.  Calculate the volume of 1 foot of Pipe 3 (21.21 in^3/foot) and then divide this into the inflow sum of 62.14 in^3/sec to find the flow rate of Pipe 3 (in feet/sec) necessary to keep the water level constant.

That is 2.93 ft/sec.

6 0
3 years ago
Which of the following is true about how the universe is expanding?
Law Incorporation [45]
B. The space between the galaxy is getting better
4 0
3 years ago
Read 2 more answers
Could a volcanic eruption suddenly bury a city and its inhabitants? (Plz explain to me)
andrezito [222]
Yes a volcanic eruption can suddenly bury a city ! if you look up some stuff on pompeii you can learn more
7 0
3 years ago
Other questions:
  • Water at 20 °C is flowing with velocity of 0.5 m/s between two parallel flat plates placed 1 cm apart. Determine the distances f
    5·1 answer
  • Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 18 kg/s, and exits at 0.2 MPa and 300°C. Determine the rate of
    7·1 answer
  • Light energy produces the only voltage in a solar cell. (a)-True(T) (b)- false(F)
    9·1 answer
  • Assume that one component with 256 I/Os is offered in three forms: QFP, full array PBGA, and fl ip chip with gold bumps. The pit
    7·1 answer
  • If 65 gallons of hydraulic oil weighs 350lb, what is the specific weight of the oil in lb/ft^3?
    14·1 answer
  • Which phase of project development provides engineers with an opportunity to determine the gaps or problems of the project on pa
    14·1 answer
  • Suppose the cylinder had a mass of 20 kg and started at a height of 2,000 m. If the initial temperature of the water was 25 °C,
    8·2 answers
  • A straight pull contains two raceways. One of the raceways has a trade size of 3
    5·1 answer
  • Whats the thing in the picture? Its a part of a computer.
    14·2 answers
  • To meet the needs of a client, what is best for an interior designer to do?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!