Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of hydrogen = 16.7 g
Mass of oxygen = 15.4 g
Limiting reactant = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 16.7 g/ 2 g/mol
Number of moles = 8.35 mol
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 15.4 g/ 32 g/mol
Number of moles = 0.48 mol
Now we will compare the moles of both reactant with product,
H₂ : H₂O
2 : 2
8.35 : 8.35
O₂ : H₂O
1 : 2
0.48 : 2×0.48 = 0.96 mol
The number of moles of water produced by oxygen are less so it will limiting reactant.
Answer:
At -13
, the gas would occupy 1.30L at 210.0 kPa.
Explanation:
Let's assume the gas behaves ideally.
As amount of gas remains constant in both state therefore in accordance with combined gas law for an ideal gas-

where
and
are initial and final pressure respectively.
and
are initial and final volume respectively.
and
are initial and final temperature in kelvin scale respectively.
Here
,
,
,
and
Hence 



So at -13
, the gas would occupy 1.30L at 210.0 kPa.
Answer:
44.7 kWh
Explanation:
Let's consider the reduction of Al₂O₃ to Al in the Bayer process.
6 e⁻ + 3 H₂O + Al₂O₃ → 2 Al + 6 OH⁻
We can establish the following relations:
- The molar mass of Al is 26.98 g/mol.
- 2 moles of Al are produced when 6 moles of e⁻ circulate.
- 1 mol of e⁻ has a charge of 96468 c (Faraday's constant).
- 1 V = 1 J/c
- 1 kWh = 3.6 × 10⁶ J
When the applied electromotive force is 5.00 V, the energy required to produce 3.00 kg (3.00 × 10³ g) of aluminum is:

Answer:
the second one ..........