<span>What I have here is exactly the same problem, however, with the time changed to 19 mins:
metabolic energy = metabolic power*time = 1.150*19*60 = 1.311 kJ..corresponding to 1.311/4.186 = 313,2 Cal or kcal
If we reasonably assume a metabolic eff.cy of 20%, it means we need to assume food for 1500 Cal approx.
Just plug the value t=15min to the equation and you will surely get the correct answer.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
The answer to your question is 5.4 cm
Explanation:
This problem refers to calculate the change in length in one dimension due to a change in temperature.
Data
α = 12 x 10⁻⁶
Lo = 150 meters
ΔT = 30 °C
Formula
ΔL/Lo = αΔT
solve for ΔL
ΔL = αLoΔT
Substitution
ΔL = (12 x 10⁻⁶)(150)(30)
Simplification
ΔL = 0054 m = 5.4 cm
Answer:
(a) 61.25 N
(b) 6.25 kg
(c) 6.25 Kg
Explanation:
Weight on moon = 10 N
Acceleration due to gravity on moon = 1.6 m/s^2
Acceleration due to gravity on earth = 9.8 m/s^2
Let m be the mass of the package.
(a) Weight on earth = mass x acceleration due to gravity on earth
Weight on earth = 6.25 x 9.8 = 61.25 N
(b) Weight on moon = mass x acceleration due to gravity on moon
10 = m x 1.6
m = 6.25 kg
(c) Mass of the package remains same as mass does not change, so the mass of package on earth is 6.25 kg.
Since they are in the same direction, you would add them together. Let’s also assume said direction is positive. 225 N + 165 N = 390 N
The formula we use
here is:
radial acceleration =
ω^2 * R <span>
110,000 * 9.81 m/s^2 = ω^2 * 0.073 m
<span>ω^2 = 110,000 * 9.81 / 0.073
ω = 3844.76 rad/s </span></span>
<span>and since: ω = 2pi*f --> f = ω/(2pi)</span><span>
f = 3844.76 / (2pi) = 611.91 rps = 611.91 * 60 rpm
<span>= 36,714.77 rpm </span></span>