<span>The Three R's: Reduce, Reuse and Recycle. The three R's - reduce, reuse and recycle - all help to cut down on the amount of waste we throw away. They conserve natural resources, landfill space and energy.
</span>
Answer:
[Ni(CN)4]2- square planar
[NiCl4]2- tetrahedral
Explanation:
For a four coordinate complex such as [Ni(CN)4]2- and [NiCl4]2-, we can decide its geometry by closely considering its magnetic properties. Both of the complexes are d8 complexes which could be found either in the tetrahedral or square planar crystal field depending on the nature of the ligand.
CN^- being a strong field ligand leads to the formation of a square planar diamagnetic d8 complex of Ni^2+. Similarly, Cl^- being a weak field ligand leads to the formation a a tetrahedral paramagnetic d8 complex of Ni^+ hence the answer given above.
Answer: Synthesis
Explanation:
2 or more substances combine to form a new compound. In this case 2Na(s) combined with Cl2(g) to make 2NaCl(s)
A + X ---> AX
Noble gases:) they are very non-reactive
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.