<span>So the oxidizing agent will receive electrons from the reducing agent and the oxidation agent will take electrons from the reducing agent.</span>
Answer:
73.88 g/mol
Explanation:
For this question we have to keep in mind that the unknown substance is a <u>gas</u>, therefore we can use the <u>ideal gas law</u>:

In this case we will have:
P= 1 atm
V= 3.16 L
T = 32 ªC = 305.15 ºK
R= 0.082 
n= ?
So, we can <u>solve for "n"</u> (moles):



Now, we have to remember that the <u>molar mass value has "g/mol"</u> units. We already have the grams (9.33 g), so we have to <u>divide</u> by the moles:


Answer:
6H20 represents six molecules of water
For the equation to be balanced, the Atom's coefficient on the left side and the right side of the equation has to be equal
so, the answer would be :
Br2 + S2032- + 5H20 -- > BR2- + 2S02- + H+
Hope this helps
75km/hr
A car traveling with constant speed travels 150km in 7200 s. What is the speed of the car