Answer:
450 kJ
Explanation:
Q = mCΔT
where Q is heat (energy),
m is mass,
C is specific heat capacity,
and ΔT is the temperature change.
Q = (1.2 kg) (4180 J/kg/°C) (100°C − 10°C)
Q = 451,440 J
Q ≈ 450 kJ
Answer:
H(max) = (v²/2g)
Explanation:
The maximum height the ball will climb will be when there is no friction at all on the surface of the hill.
Normally, the conservation of kinetic energy (specifically, the work-energy theorem) states that, the change in kinetic energy of a body between two points is equal to the work done in moving the body between the two points.
With no frictional force to do work, all of the initial kinetic emergy is used to climb to the maximum height.
ΔK.E = W
ΔK.E = (final kinetic energy) - (initial kinetic energy)
Final kinetic energy = 0 J, (since the body comes to rest at the height reached)
Initial kinetic energy = (1/2)(m)(v²)
Workdone in moving the body up to the height is done by gravity
W = - mgH
ΔK.E = W
0 - (1/2)(m)(v²) = - mgH
mgH = mv²/2
gH = v²/2
H = v²/2g.
I'm not 100%, but I went with <span>static electricity.</span>
Transverse Waves will be your answer I just saw the answer
Answer:

Explanation:
Given,
After two revolutions, angular speed = 0.5 rev/s
Angular speed after 8 revolution = ?
Using equation of circular motion



Now, Angular speed after 8 revolution



Hence, the angular speed after 8 revolution is equal to 1 rad/s.