Explanation:
It is given that,
Velocity of the particle moving in straight line is :

We need to find the distance (x) traveled by the particle during the first t seconds. It is given by :


Using by parts integration, we get the value of x as :

Hence, this is the required solution.
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.
I believe it’s B but i’m not sure
d =2.55.68m and t = 11.36s
In my opinion
Explanation:
The given data is as follows.
Length of beam, (L) = 5.50 m
Weight of the beam, (
) = 332 N
Weight of the Suki, (
) = 505 N
After crossing the left support of the beam by the suki then at some overhang distance the beam starts o tip. And, this is the maximum distance we need to calculate. Therefore, at the left support we will set up the moment and equate it to zero.

= 0
x = 
= 
= 0.986 m
Hence, the suki can come (2 - 0.986) m = 1.014 from the end before the beam begins to tip.
Thus, we can conclude that suki can come 1.014 m close to the end before the beam begins to tip.